![]() | ZunZunSite3 Online Curve Fitting and Surface Fitting Web Site | ![]() |
![]() | ![]() | ![]() | ||
| Powered by Debian Linux | Written in Python | Using the Django Web Framework | ||
![]() | ![]() | ![]() | ||
| Coded with Wingware | Plotted by Matplotlib | PDF Generation by Report Lab | ||
![]() | ||||
| ZunZunSite3's Google discussion group |
| Characterize 1D (X) Data |
| Characterize 2D (XY) Data |
| Characterize 3D (XYZ) Data |
| Fit Data To Statistical Distributions |
|
Prior to the invention of electronic calculation, only manual methods were available, of course - meaning that creating mathematical models from experimental data was done by hand. Even Napier's invention of logarithms did not help much in reducing the tediousness of this task. Linear regression techniques worked, but how to then compare models? - and so the F-statistic was created for the purpose of model selection, since graphing models and their confidence intervals was practically out of the question. Forward and backward regression techniques used linear methods, requiring less calculation than nonlinear methods, but limited the possible mathematical models to linear combinations of functions. With the advent of computerized calculations, nonlinear methods which were impractical in the past could be automated and made practical. However, the nonlinear fitting methods all required starting points for their solvers - meaning in practice you had to have a good idea of the final equation parameters to begin with! If however a genetic or monte carlo algorithm searched error space for initial parameters prior to running the nonlinear solvers, this problem could be strongly mitigated. This meant that instead of hit-or-miss forward and backward regression, large numbers of known linear *and* nonlinear equations could be fitted to an experimental data set and then ranked by a fit statistic such as AIC or SSQ errors. This technique is captured in the pyeq3 open source fitting code. Note that for an initial guesstimate of parameter values, not all data need be used. A reduced size data set with min, max, and (hopefully) evenly spaced additional data points in between are used. The total number of data points required is the number of equation parameters plus a few extra points. Reducing the data set size used by the code's genetic algorithm greatly reduces total processing time. No secrets here, it's in the open source code. I tested many different methods before choosing the one in the code, a genetic algorithm named "Differential Evolution". |
This site is dedicated to Jesus of Nazareth, son of the living God.
Ephesians 4:28
Let him that stole steal no more: but rather let him labour, working with his hands the thing which is good, that he may have to give to him that needeth. |
| King 14 2D | f(x) = k * [1/sqrt(1 + (x/r_c) ** 2) - 1/sqrt(1 + (r_t/r_c) ** 2)] ** 2 [web citation] | |
| King 14 With Offset 2D | f(x) = k * [1/sqrt(1 + (x/r_c) ** 2) - 1/sqrt(1 + (r_t/r_c) ** 2)] ** 2 + Offset [web citation] |
| Aphid Population Growth 2D | N(t) = a * exp(bt) * (1 + c * exp(bt))-2 [web citation] | |
| Beverton-Holt A 2D | y = r / (1 + ((r-1)/K) * x) | |
| Beverton-Holt B 2D | y = rx / (1 + ((r-1)/K) * x) | |
| BioScience A 2D | y = a * (1.0 - (b * cx)) | |
| BioScience B 2D | y = a * (1.0 -(1.0 + (x/b)c)-1.0 * d) | |
| Cellular Conductance 2D | g = p3/(1+exp((v-p1)/p2)) + p4*exp((v-45)/p5) [web citation] | |
| Derek Duncan Custom Equation 2D | y = a / (1 + exp(-1/b*(x-c)))d | |
| Dose-Response A 2D | y = b + (a-b) / (1 + 10x-c) | |
| Dose-Response B 2D | y = b + (a-b) / (1 + 10c-x) | |
| Dose-Response C 2D | y = b + (a-b) / (1 + 10d*(x-c)) | |
| Dose-Response D 2D | y = b + (a-b) / (1 + 10d*(c-x)) | |
| Dose-Response E 2D | y = b + (a-b) / (1 + (x/c)d) | |
| Generalized Negative Exponential 2D | y = a * (1.0 - exp(-bx))c | |
| Generalized Product Accumulation 2D | y = a(b-x) / (c + (b-x)) + d(b-x) + f | |
| Generalized Substrate Depletion 2D | y = ax / (b + x) - cx - d | |
| High-Low Affinity 2D | y = abx / (1+bx) | |
| High-Low Affinity Double 2D | y = abx / (1+bx) + cdx / (1+dx) | |
| High-Low Affinity Double Isotope Displacement ([Hot] subsumed) 2D | y = ab / (1+bx) + cd / (1+dx) | |
| High-Low Affinity Isotope Displacement ([Hot] subsumed) 2D | y = ab / (1+bx) | |
| Hyperbolic A 2D | y = (a + x) / (b + x) | |
| Hyperbolic B 2D | y = (a + bx) / (c + x) | |
| Hyperbolic C 2D | y = (a + x) / (b + cx) | |
| Hyperbolic D 2D | y = (a + bx) / (c + dx) | |
| Hyperbolic E 2D | y = ax / (b + x) | |
| Hyperbolic F 2D | y = ax / (b + x) + cx | |
| Hyperbolic G 2D | y = ax / (b + x) + cx / (d + x) | |
| Hyperbolic H 2D | y = ax / (b + x) + cx / (d + x) + fx | |
| Hyperbolic I 2D | y = ab / (b + x) | |
| Hyperbolic J 2D | y = x / (a + bx) | |
| Hyperbolic Logistic 2D | y = axb / (c + xb) | |
| Jorge Rabinovich Population Growth 2D | Y = (P1*CC) / (P1 + (CC-P1)*exp(-R*X)) | |
| Membrane Transport 2D | y = a(x-b) / (x2 + cx + d) | |
| Michaelis-Menten 2D | y = ax / (b + x) | |
| Michaelis-Menten Double 2D | y = ax / (b + x) + cx / (d + x) | |
| Michaelis-Menten Isotope Displacement ([Hot] subsumed) 2D | y = a / (b + x) | |
| Michaelis-Menten Isotope Displacement Double ([Hot] subsumed) 2D | y = a / (b + x) + c / (d + x) | |
| Michaelis-Menten Product Accumulation 2D | y = a(b-x) / (c + (b-x)) | |
| Negative Exponential 2D | y = a * (1.0 - exp(-bx)) | |
| New Zealand Ecology Logistic 1 2D | n = B0 + ((B1 - B0) / (1.0 + exp((B2 - D) * B3))) | |
| New Zealand Ecology Logistic 2 2D | n = B0 + ((B1 - B0) / (1.0 + exp((B2 - D + (B4*D2)) * B3))) | |
| Plant Disease Exponential Model 2D | Incidence = y0 * exp(r * time) [web citation] | |
| Plant Disease Gompertz Model 2D | Incidence = exp(ln(y0) * exp(-r * time)) [web citation] | |
| Plant Disease Logistic Model 2D | Incidence = 1 / (1 + (1 - y0) / (y0 * exp(-r * time))) [web citation] | |
| Plant Disease Monomolecular Model 2D | Incidence = 1 - ((1 - y0) * exp(-r * time)) [web citation] | |
| Plant Disease Weibull Model 2D | Incidence = 1 - exp(-1.0 * ((time - a) / b)c) [web citation] | |
| Plant Disease Weibull Model Scaled 2D | y = Scale * (1 - exp(-1.0 * ((time - a) / b)c)) [web citation] | |
| Preece And Baines Growth 2D | y = a - 2(a-b) / (exp(c(x-d)) + exp(f(x-d))) | |
| Scaled Log 2D | y = a * log(x) | |
| Scaled Log Transform 2D | y = a * log(bx + c) | |
| Scaled Power 2D | y = a * xb | |
| Scaled Power Transform 2D | y = a * (cx + d)b | |
| Standard 3-Parameter Logistic Equation 2D | y = d + (a - d) / (1 + (x / c)) | |
| Standard 4-Parameter Logistic Equation 2D | y = d + (a - d) / (1 + (x / c)b) | |
| Standard 5-Parameter Logistic Equation 2D | y = d + (a - d) / (1 + (x / c)b )f | |
| Weibull 2D | y = a * (1.0 - exp(-b * (x - c)d)) | |
| Xiaogang Peng Immunoassay 2D | y = K / (1.0 + exp(-1.0 * (a + blog(x) + cx))) | |
| von Bertalanffy Growth 2D | L(t) = Linf * (1.0 - exp(-K * (t-tzero))) | |
| Aphid Population Growth With Offset 2D | N(t) = a * exp(bt) * (1 + c * exp(bt))-2 + Offset [web citation] | |
| Beverton-Holt A With Offset 2D | y = r / (1 + ((r-1)/K) * x) + Offset | |
| Beverton-Holt B With Offset 2D | y = rx / (1 + ((r-1)/K) * x) + Offset | |
| BioScience A With Offset 2D | y = a * (1.0 - (b * cx)) + Offset | |
| BioScience B With Offset 2D | y = a * (1.0 -(1.0 + (x/b)c)-1.0 * d) + Offset | |
| Cellular Conductance With Offset 2D | g = p3/(1+exp((v-p1)/p2)) + p4*exp((v-45)/p5) + Offset [web citation] | |
| Derek Duncan Custom Equation With Offset 2D | y = a / (1 + exp(-1/b*(x-c)))d + Offset | |
| Generalized Negative Exponential With Offset 2D | y = a * (1.0 - exp(-bx))c + Offset | |
| High-Low Affinity Double Isotope Displacement ([Hot] subsumed) With Offset 2D | y = ab / (1+bx) + cd / (1+dx) + Offset | |
| High-Low Affinity Double With Offset 2D | y = abx / (1+bx) + cdx / (1+dx) + Offset | |
| High-Low Affinity Isotope Displacement ([Hot] subsumed) With Offset 2D | y = ab / (1+bx) + Offset | |
| High-Low Affinity With Offset 2D | y = abx / (1+bx) + Offset | |
| Hyperbolic A With Offset 2D | y = (a + x) / (b + x) + Offset | |
| Hyperbolic B With Offset 2D | y = (a + bx) / (c + x) + Offset | |
| Hyperbolic C With Offset 2D | y = (a + x) / (b + cx) + Offset | |
| Hyperbolic D With Offset 2D | y = (a + bx) / (c + dx) + Offset | |
| Hyperbolic E With Offset 2D | y = ax / (b + x) + Offset | |
| Hyperbolic F With Offset 2D | y = ax / (b + x) + cx + Offset | |
| Hyperbolic G With Offset 2D | y = ax / (b + x) + cx / (d + x) + Offset | |
| Hyperbolic H With Offset 2D | y = ax / (b + x) + cx / (d + x) + fx + Offset | |
| Hyperbolic I With Offset 2D | y = ab / (b + x) + Offset | |
| Hyperbolic J With Offset 2D | y = x / (a + bx) + Offset | |
| Hyperbolic Logistic With Offset 2D | y = axb / (c + xb) + Offset | |
| Jorge Rabinovich Population Growth With Offset 2D | Y = (P1*CC) / (P1 + (CC-P1)*exp(-R*X)) + Offset | |
| Membrane Transport With Offset 2D | y = a(x-b) / (x2 + cx + d) + Offset | |
| Michaelis-Menten Double With Offset 2D | y = ax / (b + x) + cx / (d + x) + Offset | |
| Michaelis-Menten Isotope Displacement ([Hot] subsumed) With Offset 2D | y = a / (b + x) + Offset | |
| Michaelis-Menten Isotope Displacement Double ([Hot] subsumed) With Offset 2D | y = a / (b + x) + c / (d + x) + Offset | |
| Michaelis-Menten Product Accumulation With Offset 2D | y = a(b-x) / (c + (b-x)) + Offset | |
| Michaelis-Menten With Offset 2D | y = ax / (b + x) + Offset | |
| Negative Exponential With Offset 2D | y = a * (1.0 - exp(-bx)) + Offset | |
| Plant Disease Exponential Model With Offset 2D | Incidence = y0 * exp(r * time) + Offset [web citation] | |
| Plant Disease Gompertz Model With Offset 2D | Incidence = exp(ln(y0) * exp(-r * time)) + Offset [web citation] | |
| Plant Disease Logistic Model With Offset 2D | Incidence = 1 / (1 + (1 - y0) / (y0 * exp(-r * time))) + Offset [web citation] | |
| Plant Disease Monomolecular Model With Offset 2D | Incidence = 1 - ((1 - y0) * exp(-r * time)) + Offset [web citation] | |
| Plant Disease Weibull Model Scaled With Offset 2D | y = Scale * (1 - exp(-1.0 * ((time - a) / b)c)) + Offset [web citation] | |
| Plant Disease Weibull Model With Offset 2D | Incidence = 1 - exp(-1.0 * ((time - a) / b)c) + Offset [web citation] | |
| Scaled Log Transform With Offset 2D | y = a * log(bx + c) + Offset | |
| Scaled Log With Offset 2D | y = a * log(x) + Offset | |
| Scaled Power Transform With Offset 2D | y = a * (cx + d)b + Offset | |
| Scaled Power With Offset 2D | y = a * xb + Offset | |
| Weibull With Offset 2D | y = a * (1.0 - exp(-b * (x - c)d)) + Offset | |
| Xiaogang Peng Immunoassay With Offset 2D | y = K / (1.0 + exp(-1.0 * (a + blog(x) + cx))) + Offset | |
| von Bertalanffy Growth With Offset 2D | L(t) = Linf * (1.0 - exp(-K * (t-tzero))) + Offset | |
| Dispersion Optical 2D | n2(x) = A1 + A2*x2 + A3/x2 + A4/x4 | |
| Dispersion Optical Square Root 2D | n = (A1 + A2*x2 + A3/x2 + A4/x4)0.5 | |
| Electron Beam Lithography Point Spread 2D | y = a*exp(-b*x) + c*exp(-(x-d)2 / f2) + g*exp(-(x-h)2 / i2) + j*exp(-(x-k)2 / l2) | |
| Extended Steinhart-Hart 2D | 1/T = A + Bln(R) + C(ln(R))2 + D(ln(R))3 | |
| Graeme Paterson Electric Motor 2D | y = A*exp(-b*t)*cos(omega*t + phi) + A2*exp(-b2*t) | |
| Klimpel Kinetics Flotation A 2D | y = a * (1 - (1 - exp(-b*x)) / (b*x)) | |
| Maxwell - Wiechert 1 2D | y = a1*exp(-X/Tau1) [web citation] | |
| Maxwell - Wiechert 2 2D | y = a1*exp(-X/Tau1) + a2*exp(-X/Tau2) [web citation] | |
| Maxwell - Wiechert 3 2D | y = a1*exp(-X/Tau1) + a2*exp(-X/Tau2) + a3*exp(-X/Tau3) [web citation] | |
| Maxwell - Wiechert 4 2D | y = a1*exp(-X/Tau1) + a2*exp(-X/Tau2) + a3*exp(-X/Tau3) + a4*exp(-X/Tau4) [web citation] | |
| Ramberg-Osgood 2D | y = (Stress / Youngs_Modulus) + (Stress/K)(1.0/n) | |
| Reciprocal Extended Steinhart-Hart 2D | T = 1.0 / (A + Bln(R) + C(ln(R))2 + D(ln(R))3) | |
| Reciprocal Steinhart-Hart 2D | T = 1.0 / (A + Bln(R) + C(ln(R))3) | |
| Sellmeier Optical 2D | n2(x) = 1 + (B1 x2)/(x2-C1) + (B2 x2)/(x2-C2) + (B3 x2)/(x2-C3) | |
| Sellmeier Optical Square Root 2D | n = (1 + (B1 x2)/(x2-C1) + (B2 x2)/(x2-C2) + (B3 x2)/(x2-C3))0.5 | |
| Steinhart-Hart 2D | 1/T = A + Bln(R) + C(ln(R))3 | |
| VanDeemter Chromatography 2D | y = a + b/x + cx | |
| Electron Beam Lithography Point Spread With Offset 2D | y = a*exp(-b*x) + c*exp(-(x-d)2 / f2) + g*exp(-(x-h)2 / i2) + j*exp(-(x-k)2 / l2) + Offset | |
| Graeme Paterson Electric Motor With Offset 2D | y = A*exp(-b*t)*cos(omega*t + phi) + A2*exp(-b2*t) + Offset | |
| Klimpel Kinetics Flotation A With Offset 2D | y = a * (1 - (1 - exp(-b*x)) / (b*x)) + Offset | |
| Maxwell - Wiechert 1 With Offset 2D | y = a1*exp(-X/Tau1) + Offset [web citation] | |
| Maxwell - Wiechert 2 With Offset 2D | y = a1*exp(-X/Tau1) + a2*exp(-X/Tau2) + Offset [web citation] | |
| Maxwell - Wiechert 3 With Offset 2D | y = a1*exp(-X/Tau1) + a2*exp(-X/Tau2) + a3*exp(-X/Tau3) + Offset [web citation] | |
| Maxwell - Wiechert 4 With Offset 2D | y = a1*exp(-X/Tau1) + a2*exp(-X/Tau2) + a3*exp(-X/Tau3) + a4*exp(-X/Tau4) + Offset [web citation] | |
| Ramberg-Osgood With Offset 2D | y = (Stress / Youngs_Modulus) + (Stress/K)(1.0/n) + Offset | |
| Reciprocal Extended Steinhart-Hart With Offset 2D | T = 1.0 / (A + Bln(R) + C(ln(R))2 + D(ln(R))3) + Offset | |
| Reciprocal Steinhart-Hart With Offset 2D | T = 1.0 / (A + Bln(R) + C(ln(R))3) + Offset | |
| Sellmeier Optical Square Root With Offset 2D | n = (1 + (B1 x2)/(x2-C1) + (B2 x2)/(x2-C2) + (B3 x2)/(x2-C3))0.5 + Offset | |
| Sellmeier Optical With Offset 2D | n2(x) = 1 + (B1 x2)/(x2-C1) + (B2 x2)/(x2-C2) + (B3 x2)/(x2-C3) + Offset | |
| Asymptotic Exponential A 2D | y = 1.0 - ax | |
| Asymptotic Exponential A Transform 2D | y = 1.0 - abx + c | |
| Asymptotic Exponential B 2D | y = a * (1.0 - exp(bx)) | |
| Bruno Torremans Quadruple Exponential 2D | y = Offset - R1 * exp(-x/T1) + R2 * exp(-x/T2) + R3 * exp(-x/T3) + R4 * exp(-x/T4) | |
| Double Asymptotic Exponential B 2D | y = a * (1.0 - exp(bx)) + c * (1.0 - exp(dx)) | |
| Double Exponential 2D | y = a * exp(bx) + c * exp(dx) | |
| Exponential 2D | y = a * exp(bx) | |
| Hocket-Sherby 2D | y = b - (b-a) * exp(-c * (xd)) | |
| Hoerl 2D | y = xa * exp(x) | |
| Hoerl Transform 2D | y = (bx + c)a * exp(bx + c) | |
| Inverted Exponential 2D | y = a * exp(b/x) | |
| Inverted Offset Exponential 2D | y = a * exp(b/(x+c)) | |
| Jonathan Litz Custom Exponential 2D | y = a + b * x + c * exp(-d * x) - c * x * exp(-d * x) [web citation] | |
| Offset Exponential 2D | y = a * exp(bx + c) | |
| Scaled Exponential 2D | y = a * exp(x) | |
| Shifted Exponential 2D | y = a * exp(x + b) | |
| Simple Exponential 2D | y = ax | |
| Standard Vapor Pressure 2D | y = exp(a + (b/x) + c*ln(x)) | |
| Steve Battison Exponential A 2D | y = exp((a + bx) / (c + dx)) | |
| Steve Battison Exponential B 2D | y = a * exp((b + cx) / (d + fx)) | |
| Stirling 2D | y = a * (exp(bx) - 1.0) / b | |
| Triple Exponential 2D | y = a * exp(bx) + c * exp(dx) + f * exp(gx) | |
| Asymptotic Exponential A Transform With Offset 2D | y = 1.0 - abx + c + Offset | |
| Asymptotic Exponential A With Offset 2D | y = 1.0 - ax + Offset | |
| Asymptotic Exponential B With Offset 2D | y = a * (1.0 - exp(bx)) + Offset | |
| Double Asymptotic Exponential B With Offset 2D | y = a * (1.0 - exp(bx)) + c * (1.0 - exp(dx)) + Offset | |
| Double Exponential With Offset 2D | y = a * exp(bx) + c * exp(dx) + Offset | |
| Exponential With Offset 2D | y = a * exp(bx) + Offset | |
| Hoerl Transform With Offset 2D | y = (bx + c)a * exp(bx + c) + Offset | |
| Hoerl With Offset 2D | y = xa * exp(x) + Offset | |
| Inverted Exponential With Offset 2D | y = a * exp(b/x) + Offset | |
| Inverted Offset Exponential With Offset 2D | y = a * exp(b/(x+c)) + Offset | |
| Offset Exponential With Offset 2D | y = a * exp(bx + c) + Offset | |
| Scaled Exponential With Offset 2D | y = a * exp(x) + Offset | |
| Shifted Exponential With Offset 2D | y = a * exp(x + b) + Offset | |
| Simple Exponential With Offset 2D | y = ax + Offset | |
| Standard Vapor Pressure With Offset 2D | y = exp(a + (b/x) + c*ln(x)) + Offset | |
| Steve Battison Exponential A With Offset 2D | y = exp((a + bx) / (c + dx)) + Offset | |
| Steve Battison Exponential B With Offset 2D | y = a * exp((b + cx) / (d + fx)) + Offset | |
| Stirling With Offset 2D | y = a * (exp(bx) - 1.0) / b + Offset | |
| Triple Exponential With Offset 2D | y = a * exp(bx) + c * exp(dx) + f * exp(gx) + Offset | |
| 1 Term (Scaled X) 2D | y = a0 + a1*sin(c1*x)+b1*cos(c1*x) [web citation] | |
| 1 Term Standard 2D | y = a0 + a1*sin(x)+b1*cos(x) [web citation] | |
| 2 Term Standard 2D | y = a0 + a1*sin(x)+b1*cos(x) + a2*sin(2x)+b2*cos(2x) [web citation] | |
| 3 Term Standard 2D | y = a0 + a1*sin(x)+b1*cos(x) + a2*sin(2x)+b2*cos(2x) + a3*sin(3x)+b3*cos(3x) [web citation] | |
| 4 Term Standard 2D | y = a0 + a1*sin(x)+b1*cos(x) + a2*sin(2x)+b2*cos(2x) + a3*sin(3x)+b3*cos(3x) + a4*sin(4x)+b4*cos(4x) [web citation] |
| Base 10 Logarithmic 2D | y = a + b*log10(x) | |
| Bradley 2D | y = a * ln(-b * ln(x)) | |
| Bradley Transform 2D | y = a * ln(-b * ln(cx + d)) | |
| Crystal Resonator Ageing MIL-PRF-55310E 2D | y = A(ln(Bt + 1)) + f0 | |
| Cubic Logarithmic 2D | y = a + b*ln(x) + c*ln(x)2 + d*ln(x)3 | |
| Cubic Logarithmic Scaled 2D | y = a + b*ln(f*x) + c*ln(f*x)2 + d*ln(f*x)3 | |
| Cubic Logarithmic Transform 2D | y = a + b*ln(f*x+g) + c*ln(f*x+g)2 + d*ln(f*x+g)3 | |
| Linear Logarithmic 2D | y = a + b*ln(x) | |
| Linear Logarithmic Scaled 2D | y = a + b*ln(cx) | |
| Linear Logarithmic Transform 2D | y = a + b*ln(cx+d) | |
| Quadratic Logarithmic 2D | y = a + b*ln(x) + c*ln(x)2 | |
| Quadratic Logarithmic Scaled 2D | y = a + b*ln(dx) + c*ln(dx)2 | |
| Quadratic Logarithmic Transform 2D | y = a + b*ln(dx+f) + c*ln(dx+f)2 | |
| Quartic Logarithmic 2D | y = a + b*ln(x) + c*ln(x)2 + d*ln(x)3 + f*ln(x)4 | |
| Quartic Logarithmic Scaled 2D | y = a + b*ln(h*x) + c*ln(h*x)2 + d*ln(h*x)3 + f*ln(h*x)4 | |
| Quartic Logarithmic Transform 2D | y = a + b*ln(g*x+h) + c*ln(g*x+h)2 + d*ln(g*x+h)3 + f*ln(g*x+h)4 | |
| Quintic Logarithmic 2D | y = a + b*ln(x) + c*ln(x)2 + d*ln(x)3 + f*ln(x)4 + g*ln(x)5 | |
| Quintic Logarithmic Scaled 2D | y = a + b*ln(h*x) + c*ln(h*x)2 + d*ln(h*x)3 + f*ln(h*x)4 + g*ln(h*x)4 | |
| Quintic Logarithmic Transform 2D | y = a + b*ln(h*x+i) + c*ln(h*x+i)2 + d*ln(h*x+i)3 + f*ln(h*x+i)4 + g*ln(h*x+i)5 | |
| Bradley Transform With Offset 2D | y = a * ln(-b * ln(cx + d)) + Offset | |
| Bradley With Offset 2D | y = a * ln(-b * ln(x)) + Offset | |
| NIST Bennett5 2D | y = a * (b+x)-1/c [web citation] | |
| NIST BoxBOD 2D | y = a * (1.0-exp(-b*x)) [web citation] | |
| NIST Chwirut 2D | y = exp(-a*x) / (b + c*x) [web citation] | |
| NIST DanWood 2D | y = a*xb [web citation] | |
| NIST ENSO 2D | y = a + b*cos(2*pi*x/12) + c*sin(2*pi*x/12) + f*cos(2*pi*x/d) + g*sin(2*pi*x/d) + i*cos(2*pi*x/h) + j*sin(2*pi*x/h) [web citation] | |
| NIST Eckerle4 2D | y = (a/b) * exp(-0.5*((x-c)/b)2) [web citation] | |
| NIST Gauss 2D | y = a*exp(-b*x) + c*exp(-(x-d)2 / f2) + g*exp(-(x-h)2 / i2) [web citation] | |
| NIST Hahn 2D | y = (a + b*x + c*x2 + d*x3) / (1.0 + f*x + g*x2 + h*x3) [web citation] | |
| NIST Kirby 2D | y = (a + b*x + c*x2) / (1.0 + d*x + f*x2) [web citation] | |
| NIST Lanczos 2D | y = a*exp(-b*x) + c*exp(-d*x) + f*exp(-g*x) [web citation] | |
| NIST MGH09 2D | y = a * (x2 + b*x) / (x2 + c*x + d) [web citation] | |
| NIST MGH10 2D | y = a * exp(b/(x+c)) [web citation] | |
| NIST MGH17 2D | y = a + b*exp(-x*d) + c*exp(-x*f) [web citation] | |
| NIST Misra1a 2D | y = a * (1.0 - exp(-b*x)) [web citation] | |
| NIST Misra1b 2D | y = a * (1.0 - (1.0+b*x/2.0)-2.0) [web citation] | |
| NIST Misra1c 2D | y = a * (1.0 - (1.0 + 2.0*b*x)-0.5) [web citation] | |
| NIST Misra1d 2D | y = a * b * x * (1.0 + b*x)-1.0 [web citation] | |
| NIST Rat42 2D | y = a / (1.0 + exp(b - c*x)) [web citation] | |
| NIST Rat43 2D | y = a / ((1.0 + exp(b - c*x))(1.0/d)) [web citation] | |
| NIST Roszman 2D | y = a - bx - (arctan(c/(x-d)) / pi) [web citation] | |
| NIST Thurber 2D | y = (a + bx + cx2 + dx3) / (1.0 + fx + gx2 + hx3) [web citation] | |
| NIST Bennett5 With Offset 2D | y = a * (b+x)-1/c + Offset [web citation] | |
| NIST BoxBOD With Offset 2D | y = a * (1.0-exp(-b*x)) + Offset [web citation] | |
| NIST Chwirut With Offset 2D | y = exp(-a*x) / (b + c*x) + Offset [web citation] | |
| NIST DanWood With Offset 2D | y = a*xb + Offset [web citation] | |
| NIST Eckerle4 With Offset 2D | y = (a/b) * exp(-0.5*((x-c)/b)2) + Offset [web citation] | |
| NIST Gauss With Offset 2D | y = a*exp(-b*x) + c*exp(-(x-d)2 / f2) + g*exp(-(x-h)2 / i2) + Offset [web citation] | |
| NIST Hahn With Offset 2D | y = (a + b*x + c*x2 + d*x3) / (1.0 + f*x + g*x2 + h*x3) + Offset [web citation] | |
| NIST Kirby With Offset 2D | y = (a + b*x + c*x2) / (1.0 + d*x + f*x2) + Offset [web citation] | |
| NIST Lanczos With Offset 2D | y = a*exp(-b*x) + c*exp(-d*x) + f*exp(-g*x) + Offset [web citation] | |
| NIST MGH09 With Offset 2D | y = a * (x2 + b*x) / (x2 + c*x + d) + Offset [web citation] | |
| NIST MGH10 With Offset 2D | y = a * exp(b/(x+c)) + Offset [web citation] | |
| NIST Misra1a With Offset 2D | y = a * (1.0 - exp(-b*x)) + Offset [web citation] | |
| NIST Misra1b With Offset 2D | y = a * (1.0 - (1.0+b*x/2.0)-2.0) + Offset [web citation] | |
| NIST Misra1c With Offset 2D | y = a * (1.0 - (1.0 + 2.0*b*x)-0.5) + Offset [web citation] | |
| NIST Misra1d With Offset 2D | y = a * b * x * (1.0 + b*x)-1.0 + Offset [web citation] | |
| NIST Rat42 With Offset 2D | y = a / (1.0 + exp(b - c*x)) + Offset [web citation] | |
| NIST Rat43 With Offset 2D | y = a / ((1.0 + exp(b - c*x))(1.0/d)) + Offset [web citation] | |
| NIST Thurber With Offset 2D | y = (a + bx + cx2 + dx3) / (1.0 + fx + gx2 + hx3) + Offset [web citation] | |
| CAUCHY 2D | n = A + B/x2 + C/x4 [web citation] | |
| CONRADY1 2D | n = A + B/x + C/x3.5 [web citation] | |
| CONRADY2 2D | n = A + B/x2 + C/x3.5 [web citation] | |
| HARTMANN1 2D | n = A + B/(C - x) [web citation] | |
| HARTMANN2 2D | n = A + B/(C - x)2 [web citation] | |
| HARTMANN3a 2D | n = A + B/(C - x)1.2 [web citation] | |
| HARTMANN3b 2D | n = A/(x - B)1.2 [web citation] | |
| HARTMANN4 2D | n = A + B/(C - x) + D/(E - x) [web citation] | |
| HERZBRGR2X2 2D | n = A + Bx2 + C / (x2 - 0.028) + D / (x2 - 0.028)2 [web citation] | |
| HERZBRGR3X2 2D | n = A + Bx2 + Cx4 + D / (x2 - 0.028) + E / (x2 - 0.028)2 [web citation] | |
| HERZBRGR3X3 2D | n = A + Bx2 + Cx4 + D / (x2 - 0.028) + E / (x2 - 0.028)2 + F / (x2 - 0.028)4 [web citation] | |
| HERZBRGR4X2 2D | n = A + Bx2 + Cx4 + Dx6 + E / (x2 - 0.028) + F / (x2 - 0.028)2 [web citation] | |
| HERZBRGR5X2 2D | n = A + Bx2 + Cx4 + Dx6 + Ex8 + F / (x2 - 0.028) + G / (x2 - 0.028)2 [web citation] | |
| HERZBRGRJK 2D | n = A + Bx2 + Cx4 + Dx6 + E / (x2 - J) + F / (x2 - K)2 [web citation] | |
| HoO1 2D | n2 = A + Bx2 + C / (x2 - D2) [web citation] | |
| HoO2 2D | n2 = A + Bx2 + Cx2 / (x2 - D2) [web citation] | |
| KINGSLAKE1 2D | n2 = A + B/(x2-C2) + D/(x2-E2) [web citation] | |
| KINGSLAKE2 2D | n2 = A + B/(x2-C2) + D/(x2-E2) + F/(x2-G2) [web citation] | |
| MISC01 2D | n2 = A + B/(x2-C2) [web citation] | |
| MISC02 2D | n2 = A + Bx2 + C/(x2-D2) [web citation] | |
| MISC03 2D | n2 = A + B/x2 + Cx2/(x2-D2) [web citation] | |
| MISC04 2D | n2 = A + Bx2 + Cx4 + D/x2 + Ex2/(x2-F+(Gx2/(x2-F))) [web citation] | |
| SCHOTT2X3 2D | n2 = A + Bx2 + C/x2 + D/x4 + E/x6 [web citation] | |
| SCHOTT2X4 2D | n2 = A + Bx2 + C/x2 + D/x4 + E/x6 + F/x8 [web citation] | |
| SCHOTT2X5 2D | n2 = A + Bx2 + C/x2 + D/x4 + E/x6 + F/x8 + G/x10 [web citation] | |
| SCHOTT2X6 2D | n2 = A + Bx2 + C/x2 + D/x4 + E/x6 + F/x8 + G/x10 + H/x12 [web citation] | |
| SCHOTT3X3 2D | n2 = A + Bx2 + Cx4 + D/x2 + E/x4 + F/x6 [web citation] | |
| SCHOTT3X4 2D | n2 = A + Bx2 + Cx4 + D/x2 + E/x4 + F/x6 + G/x8 [web citation] | |
| SCHOTT3X5 2D | n2 = A + Bx2 + Cx4 + D/x2 + E/x4 + F/x6 + G/x8 + H/x10 [web citation] | |
| SCHOTT4X4 2D | n2 = A + Bx2 + Cx4 + Dx6 + E/x2 + F/x4 + G/x6 + H/x8 [web citation] | |
| SCHOTT5X5 2D | n2 = A + Bx2 + Cx4 + Dx6 + Ex8 + F/x2 + G/x4 + H/x6 + J/x8 + K/x10 [web citation] | |
| SELL1T 2D | n2 = 1 + Ax2 / (x2 - B2) [web citation] | |
| SELL1TA 2D | n2 = A + Bx2 / (x2 - C2) [web citation] | |
| SELL2T 2D | n2 = 1 + Ax2/(x2-B2) + Cx2/(x2-D2) [web citation] | |
| SELL2TA 2D | n2 = A + Bx2/(x2-C2) + Dx2/(x2-E2) [web citation] | |
| SELL3T 2D | n2 = 1 + Ax2/(x2-B2) + Cx2/(x2-D2) + Ex2/(x2-F2) [web citation] | |
| SELL3TA 2D | n2 = A + Bx2/(x2-C2) + Dx2/(x2-E2) + Fx2/(x2-G2) [web citation] | |
| SELL4T 2D | n2 = 1 + Ax2/(x2-B2) + Cx2/(x2-D2) + Ex2/(x2-F2) + Gx2/(x2-H2) [web citation] | |
| SELL4TA 2D | n2 = A + Bx2/(x2-C2) + Dx2/(x2-E2) + Fx2/(x2-G2) + Hx2/(x2-J2) [web citation] | |
| SELL5T 2D | n2 = 1 + Ax2/(x2-B2) + Cx2/(x2-D2) + Ex2/(x2-F2) + Gx2/(x2-H2) + Jx2/(x2-K2) [web citation] | |
| SELL5TA 2D | n2 = A + Bx2/(x2-C2) + Dx2/(x2-E2) + Fx2/(x2-G2) + Hx2/(x2-J2) + Kx2/(x2-M2) [web citation] | |
| SELL6TA 2D | n2 = A + Bx2/(x2-C2) + Dx2/(x2-E2) + Fx2/(x2-G2) + Hx2/(x2-J2) + Kx2/(x2-M2) + Nx2/(x2-P2) [web citation] | |
| SELL7TA 2D | n2 = A + Bx2/(x2-C2) + Dx2/(x2-E2) + Fx2/(x2-G2) + Hx2/(x2-J2) + Kx2/(x2-M2) + Nx2/(x2-P2) + Qx2/(x2-R2) [web citation] | |
| SELLMOD1 2D | n2 = A + Bx + Cx2 + Dx2/(x2-E2) [web citation] | |
| SELLMOD1A 2D | n2 = A + Bx + Cx2 + D/(x2-E2) [web citation] | |
| SELLMOD2 2D | n2 = A + Bx + Cx4 + Dx2/(x2-E2) [web citation] | |
| SELLMOD2A 2D | n2 = A + Bx + Cx4 + D/(x2-E2) [web citation] | |
| SELLMOD3 2D | n2 = (Ax2+B)/(x2-C2) + Dx2/(x2-E2) [web citation] | |
| SELLMOD4 2D | n2 = A + Bx2 + C/x2 + Dx2/(x2-E2) + Fx2/(x2-G2) [web citation] | |
| SELLMOD4A 2D | n2 = A + Bx2 + C/x2 + D/(x2-E2) + F/(x2-G2) [web citation] | |
| SELLMOD5 2D | n2 = A + Bx2 + Cx2/(x2-D2) + Ex2/(x2-F2) [web citation] | |
| SELLMOD6 2D | n2 = A + Bx2/(x2-C2) + D/(x2-E2) [web citation] | |
| SELLMOD7 2D | n2 = A + Bx2 + Cx4 + D/x6 + Ex2/(x2-F2) [web citation] | |
| SELLMOD7A 2D | n2 = A + Bx2 + Cx4 + D/x6 + E/(x2-F2) [web citation] | |
| SELLMOD8 2D | n2 = A + Bx2 + Cx4 + D/(x2-E2) + F/(x2-G2) [web citation] | |
| SELLMOD9 2D | n2 = A + B/x2 + C/x4 + D/x6 + Ex2/(x2-F2) [web citation] | |
| HARTMANN3b With Offset 2D | n = A/(x - B)1.2 + Offset [web citation] | |
| SELLMOD3 With Offset 2D | n2 = (Ax2+B)/(x2-C2) + Dx2/(x2-E2) + Offset [web citation] | |
| Arnold Cohen Log-Normal Peak Shifted 2D | y = a * (exp(-0.5 * ((ln(x-f)-b)/c)2)) / (d * (x-g)) | |
| Arnold Cohen Two-Parameter Log-Normal Peak Shifted 2D | y = exp(-0.5 * ((ln(x-d)-b)/c)2) / (sqrt(2*pi) * c * (x-f)) | |
| Box Lucas A 2D | y = a * (1.0 - bx) | |
| Box Lucas A Shifted 2D | y = a * (1.0 - bx-c) | |
| Box Lucas B 2D | y = a * (1.0 - exp(-bx)) | |
| Box Lucas B Shifted 2D | y = a * (1.0 - exp(-b(x-c))) | |
| Box Lucas C 2D | y = (a / (a-b)) * (exp(-bx) - exp(-ax)) | |
| Box Lucas C shifted 2D | y = (a / (a-b)) * (exp(-b(x-c)) - exp(-a(x-c))) | |
| Extreme Value 4 Parameter Peak 2D | y = a * exp(-x + b + c - c*d*exp(-1.0 * ((x + c*ln(d) - b) / c)) / (c*d)) | |
| Extreme Value Area 2D | y = (a/c) * exp(-exp(-((x-b)/c))-((x-b)/c)) | |
| Extreme Value Peak 2D | y = a * exp(-exp(-((x-b)/c))-((x-b)/c)+1.0) | |
| Gaussian Area 2D | y = (a / (pow(2*pi, 0.5) * c)) * exp(-0.5 * ((x-b)/c)2) | |
| Gaussian Peak 2D | y = a * exp(-0.5 * ((x-b)/c)2) | |
| Gaussian Peak Modified 2D | y = a * exp(-0.5 * ((x-b)/c)d) | |
| Hamilton 2D | Vb = Gb * (I/mu)ln(mu/I)/(B*B) + (Vbmax * I)/(I + sigma_b) | |
| Laplace Area 2D | y = (a / (pow(2.0, 0.5) * c)) * exp((-1.0 * pow(2.0, 0.5) * abs(x-b))/c) | |
| Laplace Peak 2D | y = a * exp((-1.0 * pow(2.0, 0.5) * abs(x-b))/c) | |
| Log-Normal 4 Parameter 2D | y = a * exp(-1.0 * (ln(2) * ln((((x-b) * (d2-1)) / (c*d)) + 1.0)2) / ln(d)2) | |
| Log-Normal Peak A 2D | y = a * exp(-0.5 * ((ln(x)-b)/c)2) | |
| Log-Normal Peak A Modified 2D | y = a * exp(-0.5 * ((ln(x)-b)/c)d) | |
| Log-Normal Peak A Modified Shifted 2D | y = a * exp(-0.5 * ((ln(x-f)-b)/c)d) | |
| Log-Normal Peak A Shifted 2D | y = a * exp(-0.5 * ((ln(x-d)-b)/c)2) | |
| Log-Normal Peak B 2D | y = a * exp(-0.5 * (ln(x/b)/c)2) | |
| Log-Normal Peak B Modified 2D | y = a * exp(-0.5 * (ln(x/b)/c)d) | |
| Log-Normal Peak B Modified Shifted 2D | y = a * exp(-0.5 * (ln((x-f)/b)/c)d) | |
| Log-Normal Peak B Shifted 2D | y = a * exp(-0.5 * (ln((x-d/b))/c)2) | |
| Logistic Area 2D | y = a * exp(-1.0 * (x-b) / c) / (c * (1.0 + exp(-1.0 * (x-b) / c))2) | |
| Logistic Peak 2D | y = 4a * exp(-1.0 * (x-b) / c) / (1.0 + exp(-1.0 * (x-b) / c))2 | |
| Lorentzian Modified Peak A 2D | y = 1.0 / (1.0 + (x-a)b) | |
| Lorentzian Modified Peak B 2D | y = 1.0 / (a + (x-b)c) | |
| Lorentzian Modified Peak C 2D | y = a / (b + (x-c)d) | |
| Lorentzian Modified Peak D 2D | y = 1.0 / (1.0 + ((x-a)/b)c) | |
| Lorentzian Modified Peak E 2D | y = 1.0 / (a + ((x-b)/c)d) | |
| Lorentzian Modified Peak F 2D | y = a / (b + ((x-c)/d)f) | |
| Lorentzian Modified Peak G 2D | y = a / (1.0 + ((x-b)/c)d) | |
| Lorentzian Peak A 2D | y = 1.0 / (1.0 + (x-a)2) | |
| Lorentzian Peak B 2D | y = 1.0 / (a + (x-b)2) | |
| Lorentzian Peak C 2D | y = a / (b + (x-c)2) | |
| Lorentzian Peak D 2D | y = 1.0 / (1.0 + ((x-a)/b)2) | |
| Lorentzian Peak E 2D | y = 1.0 / (a + ((x-b)/c)2) | |
| Lorentzian Peak F 2D | y = a / (b + ((x-c)/d)2) | |
| Lorentzian Peak G 2D | y = a / (1.0 + ((x-b)/c)2) | |
| Pseudo-Voight Peak 2D | y = a * (d * (1/(1+((x-b)/c)2)) + (1-d) * exp(-0.5 * ((x-b)/c)2)) | |
| Pseudo-Voight Peak Modified 2D | y = a * (d * (1/(1+((x-b)/c)f)) + (1-d) * exp(-0.5 * ((x-b)/c)g)) | |
| Pulse Peak 2D | y = 4a * exp(-(x-b)/c) * (1.0 - exp(-(x-b)/c)) | |
| UVED Fruit Growth Rate 2D | y = ((t/5)(a-1)*(1-t/5)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) [web citation] | |
| UVED Fruit Growth Rate B 2D | y = c * ((t/5)(a-1)*(1-t/5)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) [web citation] | |
| UVED Fruit Growth Rate Scaled 2D | y = ((c*t)(a-1)*(1-(c*t)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) [web citation] | |
| UVED Fruit Growth Rate Scaled B 2D | y = d * ((c*t)(a-1)*(1-(c*t)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) [web citation] | |
| UVED Fruit Growth Rate Transform 2D | y = ((c*t+d)(a-1)*(1-(c*t+d)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) [web citation] | |
| UVED Fruit Growth Rate Transform B 2D | y = f * ((c*t+d)(a-1)*(1-(c*t+d)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) [web citation] | |
| Weibull Peak 2D | y = a * exp(-0.5 * (ln(x/b)/c)2) | |
| Weibull Peak Modified 2D | y = a * exp(-0.5 * (ln(x/b)/c)d) | |
| Weibull Peak Modified Shifted 2D | y = a * exp(-0.5 * (ln((x-f)/b)/c)d) | |
| Weibull Peak Shifted 2D | y = a * exp(-0.5 * (ln((x-d)/b)/c)2) | |
| Arnold Cohen Log-Normal Peak Shifted With Offset 2D | y = a * (exp(-0.5 * ((ln(x-f)-b)/c)2)) / (d * (x-g)) + Offset | |
| Arnold Cohen Two-Parameter Log-Normal Peak Shifted With Offset 2D | y = exp(-0.5 * ((ln(x-d)-b)/c)2) / (sqrt(2*pi) * c * (x-f)) + Offset | |
| Box Lucas A Shifted With Offset 2D | y = a * (1.0 - bx-c) + Offset | |
| Box Lucas A With Offset 2D | y = a * (1.0 - bx) + Offset | |
| Box Lucas B Shifted With Offset 2D | y = a * (1.0 - exp(-b(x-c))) + Offset | |
| Box Lucas B With Offset 2D | y = a * (1.0 - exp(-bx)) + Offset | |
| Box Lucas C With Offset 2D | y = (a / (a-b)) * (exp(-bx) - exp(-ax)) + Offset | |
| Box Lucas C shifted With Offset 2D | y = (a / (a-b)) * (exp(-b(x-c)) - exp(-a(x-c))) + Offset | |
| Extreme Value 4 Parameter Peak With Offset 2D | y = a * exp(-x + b + c - c*d*exp(-1.0 * ((x + c*ln(d) - b) / c)) / (c*d)) + Offset | |
| Extreme Value Area With Offset 2D | y = (a/c) * exp(-exp(-((x-b)/c))-((x-b)/c)) + Offset | |
| Extreme Value Peak With Offset 2D | y = a * exp(-exp(-((x-b)/c))-((x-b)/c)+1.0) + Offset | |
| Gaussian Area With Offset 2D | y = (a / (pow(2*pi, 0.5) * c)) * exp(-0.5 * ((x-b)/c)2) + Offset | |
| Gaussian Peak Modified With Offset 2D | y = a * exp(-0.5 * ((x-b)/c)d) + Offset | |
| Gaussian Peak With Offset 2D | y = a * exp(-0.5 * ((x-b)/c)2) + Offset | |
| Hamilton With Offset 2D | Vb = Gb * (I/mu)ln(mu/I)/(B*B) + (Vbmax * I)/(I + sigma_b) + Offset | |
| Laplace Area With Offset 2D | y = (a / (pow(2.0, 0.5) * c)) * exp((-1.0 * pow(2.0, 0.5) * abs(x-b))/c) + Offset | |
| Laplace Peak With Offset 2D | y = a * exp((-1.0 * pow(2.0, 0.5) * abs(x-b))/c) + Offset | |
| Log-Normal 4 Parameter With Offset 2D | y = a * exp(-1.0 * (ln(2) * ln((((x-b) * (d2-1)) / (c*d)) + 1.0)2) / ln(d)2) + Offset | |
| Log-Normal Peak A Modified Shifted With Offset 2D | y = a * exp(-0.5 * ((ln(x-f)-b)/c)d) + Offset | |
| Log-Normal Peak A Modified With Offset 2D | y = a * exp(-0.5 * ((ln(x)-b)/c)d) + Offset | |
| Log-Normal Peak A Shifted With Offset 2D | y = a * exp(-0.5 * ((ln(x-d)-b)/c)2) + Offset | |
| Log-Normal Peak A With Offset 2D | y = a * exp(-0.5 * ((ln(x)-b)/c)2) + Offset | |
| Log-Normal Peak B Modified Shifted With Offset 2D | y = a * exp(-0.5 * (ln((x-f)/b)/c)d) + Offset | |
| Log-Normal Peak B Modified With Offset 2D | y = a * exp(-0.5 * (ln(x/b)/c)d) + Offset | |
| Log-Normal Peak B Shifted With Offset 2D | y = a * exp(-0.5 * (ln((x-d/b))/c)2) + Offset | |
| Log-Normal Peak B With Offset 2D | y = a * exp(-0.5 * (ln(x/b)/c)2) + Offset | |
| Logistic Area With Offset 2D | y = a * exp(-1.0 * (x-b) / c) / (c * (1.0 + exp(-1.0 * (x-b) / c))2) + Offset | |
| Logistic Peak With Offset 2D | y = 4a * exp(-1.0 * (x-b) / c) / (1.0 + exp(-1.0 * (x-b) / c))2 + Offset | |
| Lorentzian Modified Peak A With Offset 2D | y = 1.0 / (1.0 + (x-a)b) + Offset | |
| Lorentzian Modified Peak B With Offset 2D | y = 1.0 / (a + (x-b)c) + Offset | |
| Lorentzian Modified Peak C With Offset 2D | y = a / (b + (x-c)d) + Offset | |
| Lorentzian Modified Peak D With Offset 2D | y = 1.0 / (1.0 + ((x-a)/b)c) + Offset | |
| Lorentzian Modified Peak E With Offset 2D | y = 1.0 / (a + ((x-b)/c)d) + Offset | |
| Lorentzian Modified Peak F With Offset 2D | y = a / (b + ((x-c)/d)f) + Offset | |
| Lorentzian Modified Peak G With Offset 2D | y = a / (1.0 + ((x-b)/c)d) + Offset | |
| Lorentzian Peak A With Offset 2D | y = 1.0 / (1.0 + (x-a)2) + Offset | |
| Lorentzian Peak B With Offset 2D | y = 1.0 / (a + (x-b)2) + Offset | |
| Lorentzian Peak C With Offset 2D | y = a / (b + (x-c)2) + Offset | |
| Lorentzian Peak D With Offset 2D | y = 1.0 / (1.0 + ((x-a)/b)2) + Offset | |
| Lorentzian Peak E With Offset 2D | y = 1.0 / (a + ((x-b)/c)2) + Offset | |
| Lorentzian Peak F With Offset 2D | y = a / (b + ((x-c)/d)2) + Offset | |
| Lorentzian Peak G With Offset 2D | y = a / (1.0 + ((x-b)/c)2) + Offset | |
| Pseudo-Voight Peak Modified With Offset 2D | y = a * (d * (1/(1+((x-b)/c)f)) + (1-d) * exp(-0.5 * ((x-b)/c)g)) + Offset | |
| Pseudo-Voight Peak With Offset 2D | y = a * (d * (1/(1+((x-b)/c)2)) + (1-d) * exp(-0.5 * ((x-b)/c)2)) + Offset | |
| Pulse Peak With Offset 2D | y = 4a * exp(-(x-b)/c) * (1.0 - exp(-(x-b)/c)) + Offset | |
| UVED Fruit Growth Rate B With Offset 2D | y = c * ((t/5)(a-1)*(1-t/5)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) + Offset [web citation] | |
| UVED Fruit Growth Rate Scaled B With Offset 2D | y = d * ((c*t)(a-1)*(1-(c*t)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) + Offset [web citation] | |
| UVED Fruit Growth Rate Scaled With Offset 2D | y = ((c*t)(a-1)*(1-(c*t)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) + Offset [web citation] | |
| UVED Fruit Growth Rate Transform B With Offset 2D | y = f * ((c*t+d)(a-1)*(1-(c*t+d)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) + Offset [web citation] | |
| UVED Fruit Growth Rate Transform With Offset 2D | y = ((c*t+d)(a-1)*(1-(c*t+d)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) + Offset [web citation] | |
| UVED Fruit Growth Rate With Offset 2D | y = ((t/5)(a-1)*(1-t/5)(b-1))/(((a-1)/(a+b-2))(a-1)*((b-1)/(a+b-2))(b-1)) + Offset [web citation] | |
| Weibull Peak Modified Shifted With Offset 2D | y = a * exp(-0.5 * (ln((x-f)/b)/c)d) + Offset | |
| Weibull Peak Modified With Offset 2D | y = a * exp(-0.5 * (ln(x/b)/c)d) + Offset | |
| Weibull Peak Shifted With Offset 2D | y = a * exp(-0.5 * (ln((x-d)/b)/c)2) + Offset | |
| Weibull Peak With Offset 2D | y = a * exp(-0.5 * (ln(x/b)/c)2) + Offset | |
| 1st Order (Linear) 2D | y = a + bx | |
| 2nd Order (Quadratic) 2D | y = a + bx + cx2 | |
| 3rd Order (Cubic) 2D | y = a + bx + cx2 + dx3 | |
| 4th Order (Quartic) 2D | y = a + bx + cx2 + dx3 + fx4 | |
| 5th Order (Quintic) 2D | y = a + bx + cx2 + dx3 + fx4 + gx5 | |
| Marc Plante's Custom Quadratic 2D | y = (-b + (b2 - 4 a (c - x))0.5) / 2 / a | |
| User-Customizable Polynomial 2D | y = user-customizable polynomial | |
| User-Selectable Polynomial 2D | y = user-selectable polynomial | |
| Marc Plante's Custom Quadratic With Offset 2D | y = (-b + (b2 - 4 a (c - x))0.5) / 2 / a + Offset | |
| BET Sigmoidal A 2D | y = x / (a + bx - (a+b)x2) | |
| BET Sigmoidal B 2D | y = abx / (1.0 + (b-2.0)x - (b-1.0)x2) | |
| Boltzmann Sigmoid A 2D | y = (a - b) / (1.0 + exp((x-c)/d)) + b | |
| Boltzmann Sigmoid B 2D | y = (a - b) / (1.0 + exp((x-c)/(dx))) + b | |
| Chapman 2D | y = a * (1.0 - exp(-bx))c | |
| Don Levin Sigmoid 2D | y = a1 / (1.0 + exp(-(x-b1)/c1)) + a2 / (1.0 + exp(-(x-b2)/c2)) + a3 / (1.0 + exp(-(x-b3)/c3)) | |
| Five-Parameter Logistic 2D | y = d + (a-d) / (1.0 + (x/c)b)f | |
| Four-Parameter Logistic 2D | y = d + (a-d) / (1.0 + (x/c)b) | |
| Generalised Logistic 2D | y = A + C / (1 + T * exp(-B * (x - M)))1/T [web citation] | |
| Gompertz A 2D | y = a * exp(-exp(b - cx)) | |
| Gompertz B 2D | y = a * exp(-exp((x-b)/c)) | |
| Gompertz C 2D | y = a * exp(b * exp(c * x)) | |
| Hill 2D | y = axb / (cb + xb) | |
| Janoschek Growth 2D | w = a - (1.0 - exp(-b * tc)) [web citation] | |
| Janoschek Growth Modified 2D | w = a - (a - w0) * (1.0 - exp(-b * tc)) [web citation] | |
| Logistic A 2D | y = a / (1.0 + b*exp(-cx)) | |
| Logistic B 2D | y = a / (1.0 + (x/b)c) | |
| Lomolino 2D | y = a / (1.0 + bln(c/x)) | |
| Magnetic Saturation 2D | y = ax * (1.0 + b*exp(cx)) | |
| Morgan-Mercer-Flodin (MMF) 2D | y = (a * b + c * xd) / (b + xd) | |
| Peters-Baskin Step-Stool: y (1) 2D | y = ln(c + exp(b*d*x)) / d [web citation] | |
| Peters-Baskin Step-Stool: yI (2) 2D | yI = ln(exp(b2*c1*d1) + exp(b2*d1*x)) / d1 [web citation] | |
| Peters-Baskin Step-Stool: yII (3) 2D | K = ln( exp(b2*c1*d1) + exp(b2*d1*x) ) yII = b1*x + K/d1 [web citation] | |
| Peters-Baskin Step-Stool: yIII (6) 2D | K = ln( exp(b2*c1*d1) + exp(b2*d1*x) ) yII = b1*x + K/d1 L = ln( exp(b2*c1*d1) + exp(b2*c2*d1) ) yIII = yII - ln( exp(d2*(b1*c1 + L/d1)) + exp(d2*yII) ) / d2 [web citation] | |
| Peters-Baskin Step-Stool: yIV (9) 2D | K = ln( exp(b2*c1*d1) + exp(b2*d1*x) ) yII = b1*x + K/d1 L = ln( exp(b2*c1*d1) + exp(b2*c2*d1) ) yIII = yII - ln( exp(d2*(b1*c2 + L/d1)) + exp(d2*yII) ) / d2 yII,0 = ln(exp(b2*c1*d1) + 1.0 ) / d1 yIII,0 = yII,0 - ln( exp(d2*(b1*c2 + L/d1)) + exp(d2*yII,0) ) / d2 yIV = yIII - yIII,0 [web citation] | |
| Peters-Baskin Step-Stool: yV (10) 2D | K = ln( exp(b2*c1*d1) + exp(b2*d1*x) ) yII = b1*x + K/d1 L = ln( exp(b2*c1*d1) + exp(b2*c2*d1) ) yIII = yII - ln( exp(d2*(b1*c2 + L/d1)) + exp(d2*yII) ) / d2 yII,0 = ln(exp(b2*c1*d1) + 1.0 ) / d1 yIII,0 = yII,0 - ln( exp(d2*(b1*c2 + L/d1)) + exp(d2*yII,0) ) / d2 yIV = yIII - yIII,0 + q [web citation] | |
| Peters-Baskin Step-Stool: yV (10) Scaled 2D | K = ln( exp(b2*c1*d1) + exp(b2*d1*x) ) yII = b1*x + K/d1 L = ln( exp(b2*c1*d1) + exp(b2*c2*d1) ) yIII = yII - ln( exp(d2*(b1*c2 + L/d1)) + exp(d2*yII) ) / d2 yII,0 = ln(exp(b2*c1*d1) + 1.0 ) / d1 yIII,0 = yII,0 - ln( exp(d2*(b1*c2 + L/d1)) + exp(d2*yII,0) ) / d2 yIV = scale * (yIII - yIII,0 )+ q [web citation] | |
| Richards 2D | y = 1.0 / (a + b * e(c*x))d | |
| Sigmoid A 2D | y = 1.0 / (1.0 + exp(-a(x-b))) | |
| Sigmoid A Modified 2D | y = 1.0 / (1.0 + exp(-a(x-b)))c | |
| Sigmoid B 2D | y = a / (1.0 + exp(-(x-b)/c)) | |
| Sigmoid B Modified 2D | y = a / (1.0 + exp(-(x-b)/c))d | |
| Weibull 2D | y = a - b*exp(-cxd) | |
| Weibull CDF 2D | y = 1.0 - exp(-(x/b)a) | |
| Weibull CDF Scaled 2D | y = Scale * (1.0 - exp(-(x/b)a)) | |
| Weibull PDF 2D | y = (a/b) * (x/b)(a-1.0) * exp(-(x/b)a) | |
| BET Sigmoidal A With Offset 2D | y = x / (a + bx - (a+b)x2) + Offset | |
| BET Sigmoidal B With Offset 2D | y = abx / (1.0 + (b-2.0)x - (b-1.0)x2) + Offset | |
| Chapman With Offset 2D | y = a * (1.0 - exp(-bx))c + Offset | |
| Don Levin Sigmoid With Offset 2D | y = a1 / (1.0 + exp(-(x-b1)/c1)) + a2 / (1.0 + exp(-(x-b2)/c2)) + a3 / (1.0 + exp(-(x-b3)/c3)) + Offset | |
| Gompertz A With Offset 2D | y = a * exp(-exp(b - cx)) + Offset | |
| Gompertz B With Offset 2D | y = a * exp(-exp((x-b)/c)) + Offset | |
| Gompertz C With Offset 2D | y = a * exp(b * exp(c * x)) + Offset | |
| Hill With Offset 2D | y = axb / (cb + xb) + Offset | |
| Logistic A With Offset 2D | y = a / (1.0 + b*exp(-cx)) + Offset | |
| Logistic B With Offset 2D | y = a / (1.0 + (x/b)c) + Offset | |
| Lomolino With Offset 2D | y = a / (1.0 + bln(c/x)) + Offset | |
| Magnetic Saturation With Offset 2D | y = ax * (1.0 + b*exp(cx)) + Offset | |
| Morgan-Mercer-Flodin (MMF) With Offset 2D | y = (a * b + c * xd) / (b + xd) + Offset | |
| Peters-Baskin Step-Stool: y (1) With Offset 2D | y = ln(c + exp(b*d*x)) / d + Offset [web citation] | |
| Peters-Baskin Step-Stool: yI (2) With Offset 2D | yI = ln(exp(b2*c1*d1) + exp(b2*d1*x)) / d1 + Offset [web citation] | |
| Peters-Baskin Step-Stool: yII (3) With Offset 2D | K = ln( exp(b2*c1*d1) + exp(b2*d1*x) ) yII = b1*x + K/d1 + Offset [web citation] | |
| Peters-Baskin Step-Stool: yIII (6) With Offset 2D | K = ln( exp(b2*c1*d1) + exp(b2*d1*x) ) yII = b1*x + K/d1 L = ln( exp(b2*c1*d1) + exp(b2*c2*d1) ) yIII = yII - ln( exp(d2*(b1*c1 + L/d1)) + exp(d2*yII) ) / d2 + Offset [web citation] | |
| Peters-Baskin Step-Stool: yIV (9) With Offset 2D | K = ln( exp(b2*c1*d1) + exp(b2*d1*x) ) yII = b1*x + K/d1 L = ln( exp(b2*c1*d1) + exp(b2*c2*d1) ) yIII = yII - ln( exp(d2*(b1*c2 + L/d1)) + exp(d2*yII) ) / d2 yII,0 = ln(exp(b2*c1*d1) + 1.0 ) / d1 yIII,0 = yII,0 - ln( exp(d2*(b1*c2 + L/d1)) + exp(d2*yII,0) ) / d2 yIV = yIII - yIII,0 + Offset [web citation] | |
| Richards With Offset 2D | y = 1.0 / (a + b * e(c*x))d + Offset | |
| Sigmoid A Modified With Offset 2D | y = 1.0 / (1.0 + exp(-a(x-b)))c + Offset | |
| Sigmoid A With Offset 2D | y = 1.0 / (1.0 + exp(-a(x-b))) + Offset | |
| Sigmoid B Modified With Offset 2D | y = a / (1.0 + exp(-(x-b)/c))d + Offset | |
| Sigmoid B With Offset 2D | y = a / (1.0 + exp(-(x-b)/c)) + Offset | |
| Weibull CDF Scaled With Offset 2D | y = Scale * (1.0 - exp(-(x/b)a)) + Offset | |
| Weibull CDF With Offset 2D | y = 1.0 - exp(-(x/b)a) + Offset | |
| Weibull PDF With Offset 2D | y = (a/b) * (x/b)(a-1.0) * exp(-(x/b)a) + Offset | |
| Cardinal Sine (sinc) Squared [radians] 2D | y = amplitude * sin(pi * (x - center) / width)2 / (pi * (x - center) / width) | |
| Cardinal Sine (sinc) [radians] 2D | y = amplitude * sin(pi * (x - center) / width) / (pi * (x - center) / width) | |
| Great Circle [Degrees] 2D | latitude = arctan(A*cos((B + longitude) / 57.2957795131)) * 57.2957795131 | |
| Great Circle [radians] 2D | latitude = arctan(A*cos(B + longitude)) | |
| Hyperbolic Cosine [radians] 2D | y = amplitude * cosh(pi * (x - center) / width) | |
| Sine Squared [radians] 2D | y = amplitude * sin(pi * (x - center) / width)2 | |
| Sine [radians] 2D | y = amplitude * sin(pi * (x - center) / width) | |
| Tangent [radians] 2D | y = amplitude * tan(pi * (x - center) / width) | |
| Cardinal Sine (sinc) Squared [radians] With Offset 2D | y = amplitude * sin(pi * (x - center) / width)2 / (pi * (x - center) / width) + Offset | |
| Cardinal Sine (sinc) [radians] With Offset 2D | y = amplitude * sin(pi * (x - center) / width) / (pi * (x - center) / width) + Offset | |
| Hyperbolic Cosine [radians] With Offset 2D | y = amplitude * cosh(pi * (x - center) / width) + Offset | |
| Sine Squared [radians] With Offset 2D | y = amplitude * sin(pi * (x - center) / width)2 + Offset | |
| Sine [radians] With Offset 2D | y = amplitude * sin(pi * (x - center) / width) + Offset | |
| Tangent [radians] With Offset 2D | y = amplitude * tan(pi * (x - center) / width) + Offset | |
| Bleasdale 2D | y = 1.0 / (a + bx)(-1.0/c) | |
| Extended Holliday 2D | y = a / (a + bx + cx2) | |
| Harris 2D | y = 1.0 / (a + bxc) | |
| Holliday 2D | y = 1.0 / (a + bx + cx2) | |
| Inverse Bleasdale 2D | y = x / (a + bx)(-1.0/c) | |
| InverseHarris 2D | y = x / (a + bxc) | |
| Nelder 2D | y = (a + x) / (b + c(a + x) + d(a + x)2 | |
| Bleasdale With Offset 2D | y = 1.0 / (a + bx)(-1.0/c) + Offset | |
| Extended Holliday With Offset 2D | y = a / (a + bx + cx2) + Offset | |
| Harris With Offset 2D | y = 1.0 / (a + bxc) + Offset | |
| Holliday With Offset 2D | y = 1.0 / (a + bx + cx2) + Offset | |
| Inverse Bleasdale With Offset 2D | y = x / (a + bx)(-1.0/c) + Offset | |
| InverseHarris With Offset 2D | y = x / (a + bxc) + Offset | |
| Nelder With Offset 2D | y = (a + x) / (b + c(a + x) + d(a + x)2 + Offset | |
| Full Cubic Exponential 3D | z = a + b*exp(x) + c*exp(y) + d*exp(x)2 + f*exp(y)2 + g*exp(x)3 + h*exp(y)3 + i*exp(x)*exp(y) + j*exp(x)2*exp(y) + k*exp(x)*exp(y)2 | |
| Full Quadratic Exponential 3D | z = a + b*exp(x) + c*exp(y) + d*exp(x)2 + f*exp(y)2 + g*exp(x)*exp(y) | |
| Linear Exponential 3D | z = a + b*exp(x) + c*exp(y) | |
| Simplified Cubic Exponential 3D | z = a + b*exp(x) + c*exp(y) + d*exp(x)2 + e*exp(y)2 + f*exp(x)3 + g*exp(y)3 | |
| Simplified Quadratic Exponential 3D | z = a + b*exp(x) + c*exp(y) + d*exp(x)2 + f*exp(y)2 | |
| Transform Full Cubic Exponential 3D | z = a + b*exp(m*x+n) + c*exp(o*y+p) + d*exp(m*x+n)2 + f*exp(o*y+p)2 + g*exp(m*x+n)3 + h*exp(o*y+p)3 + i*exp(m*x+n)*exp(o*y+p) + j*exp(m*x+n)2*exp(o*y+p) + k*exp(m*x+n)*exp(o*y+p)2 | |
| Transform Full Quadratic Exponential 3D | z = a + b*exp(h*x+i) + c*exp(j*y+k) + d*exp(h*x+i)2 + e*exp(j*y+k)2 + f*exp(h*x+i)*exp(j*y+k) | |
| Transform Linear Exponential 3D | z = a + b*exp(d*x+f) + c*exp(g*y+h) | |
| Transform Simplified Cubic Exponential 3D | z = a + b*exp(i*x+j) + c*exp(k*y+m) + d*exp(i*x+j)2 + f*exp(k*y+m)2 + g*exp(i*x+j)3 + h*exp(k*y+m)3 | |
| Transform Simplified Quadratic Exponential 3D | z = a + b*exp(g*x+h) + c*exp(i*y+j) + d*exp(g*x+h)2 + f*exp(i*y+j)2 |
| Full Cubic Logarithmic 3D | z = a + b*ln(x) + c*ln(y) + d*ln(x)2 + f*ln(y)2 + g*ln(x)3 + h*ln(y)3 + i*ln(x)*ln(y) + j*ln(x)2*ln(y) + k*ln(x)*ln(y)2 | |
| Full Quadratic Logarithmic 3D | z = a + b*ln(x) + c*ln(y) + d*ln(x)2 + f*ln(y)2 + g*ln(x)*ln(y) | |
| Linear Logarithmic 3D | z = a + b*ln(x) + c*ln(y) | |
| Simplified Cubic Logarithmic 3D | z = a + b*ln(x) + c*ln(y) + d*ln(x)2 + f*ln(y)2 + g*ln(x)3 + h*ln(y)3 | |
| Simplified Quadratic Logarithmic 3D | z = a + b*ln(x) + c*ln(y) + d*ln(x)2 + f*ln(y)2 | |
| Transform Full Cubic Logarithmic 3D | z = a + b*ln(m*x+n) + c*ln(o*y+p) + d*ln(m*x+n)2 + f*ln(o*y+p)2 + g*ln(m*x+n)3 + h*ln(o*y+p)3 + i*ln(m*x+n)*ln(o*y+p) + j*ln(m*x+n)2*ln(o*y+p) + k*ln(m*x+n)*ln(o*y+p)2 | |
| Transform Full Quadratic Logarithmic 3D | z = a + b*ln(h*x+i) + c*ln(j*y+k) + d*ln(h*x+i)2 + f*ln(j*y+k)2 + g*ln(h*x+i)*ln(j*y+k) | |
| Transform Linear Logarithmic 3D | z = a + b*ln(d*x+f) + c*ln(g*y+h) | |
| Transform Simplified Cubic Logarithmic 3D | z = a + b*ln(i*x+j) + c*ln(k*y+m) + d*ln(i*x+j)2 + f*ln(k*y+m)2 + g*ln(i*x+j)3 + h*ln(k*y+m)3 | |
| Transform Simplified Quadratic Logarithmic 3D | z = a + b*ln(g*x+h) + c*ln(i*y+j) + d*ln(g*x+h)2 + f*ln(i*y+j)2 |
| Gary Cler's Custom Equation Transform 3D | z = a * (dx + f)b * (gy + h)c | |
| Gaussian Curvature Of Paraboloid 3D | z = 4a2 / (1 + 4a2 * (x2 + y2))2 | |
| Gaussian Curvature Of Paraboloid Scaled 3D | z = Scale * 4a2 / (1 + 4a2 * (x2 + y2))2 | |
| Gaussian Curvature Of Richmond's Minimal Surface 3D | z = -1.0 * a * (x2 + y2)3 / (b + (x2 + y2)2)4 | |
| Gaussian Curvature Of Whitney's Umbrella A 3D | z = -1.0 * a * y2 / (x2 + a * (y2 + y4))2 | |
| Gaussian Curvature Of Whitney's Umbrella B 3D | z = -1.0 * a * x2 / (y2 + a * (x2 + x4))2 | |
| Liping Zheng's core loss coefficients 3D | z = ax2y + bx2y2 + cx1.5y1.5 | |
| Mean Curvature Of Paraboloid 3D | z = 2 * (a + 2a3 * (x2 + y2)) / (1 + 4a2 * (x2 + y2))1.5 | |
| Mean Curvature Of Paraboloid Scaled 3D | z = Scale * (a + 2a3 * (x2 + y2)) / (1 + 4a2 * (x2 + y2))1.5 | |
| Mean Curvature Of Whitney's Umbrella A 3D | z = -1.0 * x * (a + b * y2) / (x2 + a * (y2 + y4))1.5 | |
| Mean Curvature Of Whitney's Umbrella B 3D | z = -1.0 * y * (a + b * x2) / (y2 + a * (x2 + x4))1.5 | |
| Menn's Surface A 3D | z = ax4 + bx2y - cy2 | |
| Menn's Surface B 3D | z = ay4 + by2x - cx2 | |
| Monkey Saddle A 3D | z = ax3 - bxy2 | |
| Monkey Saddle B 3D | z = ay3 - byx2 | |
| Monkey Saddle Transform A 3D | z = a(cx + d)3 - b(cx + d)(fy + g)2 | |
| Monkey Saddle Transform B 3D | z = a(cy + d)3 - b(cy + d)(fx + g)2 | |
| Paraboloid 3D | z = a * (x2 + y2) | |
| Paraboloid Transform 3D | z = a * ((bx + c)2 + (dy + f)2) | |
| Paschen's Law for Breakdown Field Strength 3D | Ebreakdown = pressure * (a / (ln(pressure * distance) + b)) | |
| Paschen's Law for Breakdown Voltage 3D | Vbreakdown = a(pressure * distance) / (ln(pressure * distance) + b) | |
| Rex Kelfkens' Custom Equation 3D | z = exp(A+B*ln(x)+C*ln(y)) | |
| Rex Kelfkens' Custom Equation Transform 3D | z = exp(A+B*ln(x * xscale + xoffset)+C*ln(y * yscale + yoffset)) | |
| Gary Cler's Custom Equation Transform With Offset 3D | z = a * (dx + f)b * (gy + h)c + Offset | |
| Gaussian Curvature Of Paraboloid Scaled With Offset 3D | z = Scale * 4a2 / (1 + 4a2 * (x2 + y2))2 + Offset | |
| Gaussian Curvature Of Paraboloid With Offset 3D | z = 4a2 / (1 + 4a2 * (x2 + y2))2 + Offset | |
| Gaussian Curvature Of Richmond's Minimal Surface With Offset 3D | z = -1.0 * a * (x2 + y2)3 / (b + (x2 + y2)2)4 + Offset | |
| Gaussian Curvature Of Whitney's Umbrella A With Offset 3D | z = -1.0 * a * y2 / (x2 + a * (y2 + y4))2 + Offset | |
| Gaussian Curvature Of Whitney's Umbrella B With Offset 3D | z = -1.0 * a * x2 / (y2 + a * (x2 + x4))2 + Offset | |
| Liping Zheng's core loss coefficients With Offset 3D | z = ax2y + bx2y2 + cx1.5y1.5 + Offset | |
| Mean Curvature Of Paraboloid Scaled With Offset 3D | z = Scale * (a + 2a3 * (x2 + y2)) / (1 + 4a2 * (x2 + y2))1.5 + Offset | |
| Mean Curvature Of Paraboloid With Offset 3D | z = 2 * (a + 2a3 * (x2 + y2)) / (1 + 4a2 * (x2 + y2))1.5 + Offset | |
| Mean Curvature Of Whitney's Umbrella A With Offset 3D | z = -1.0 * x * (a + b * y2) / (x2 + a * (y2 + y4))1.5 + Offset | |
| Mean Curvature Of Whitney's Umbrella B With Offset 3D | z = -1.0 * y * (a + b * x2) / (y2 + a * (x2 + x4))1.5 + Offset | |
| Menn's Surface A With Offset 3D | z = ax4 + bx2y - cy2 + Offset | |
| Menn's Surface B With Offset 3D | z = ay4 + by2x - cx2 + Offset | |
| Monkey Saddle A With Offset 3D | z = ax3 - bxy2 + Offset | |
| Monkey Saddle B With Offset 3D | z = ay3 - byx2 + Offset | |
| Monkey Saddle Transform A With Offset 3D | z = a(cx + d)3 - b(cx + d)(fy + g)2 + Offset | |
| Monkey Saddle Transform B With Offset 3D | z = a(cy + d)3 - b(cy + d)(fx + g)2 + Offset | |
| Paraboloid Transform With Offset 3D | z = a * ((bx + c)2 + (dy + f)2) + Offset | |
| Paraboloid With Offset 3D | z = a * (x2 + y2) + Offset | |
| Paschen's Law for Breakdown Field Strength With Offset 3D | Ebreakdown = pressure * (a / (ln(pressure * distance) + b)) + Offset | |
| Paschen's Law for Breakdown Voltage With Offset 3D | Vbreakdown = a(pressure * distance) / (ln(pressure * distance) + b) + Offset | |
| Rex Kelfkens' Custom Equation Transform With Offset 3D | z = exp(A+B*ln(x * xscale + xoffset)+C*ln(y * yscale + yoffset)) + Offset | |
| Rex Kelfkens' Custom Equation With Offset 3D | z = exp(A+B*ln(x)+C*ln(y)) + Offset | |
| NIST Nelson 3D | log(y) = b1 - b2 * X1 * exp(-b3*X2) [web citation] | |
| NIST Nelson Autolog 3D | z = exp(b1 - b2 * x * exp(-b3*y)) [web citation] | |
| NIST Nelson Autolog With Offset 3D | z = exp(b1 - b2 * x * exp(-b3*y)) + Offset [web citation] | |
| Sag For Asphere 0 3D | s2 = x2 + y2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) [web citation] | |
| Sag For Asphere 0 Borisovsky 3D | s2 = (x - a)2 + (y - b)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + offset | |
| Sag For Asphere 0 Scaled 3D | s2 = x2 + y2 z = Scale * (s2/r) / (1+(1-(k+1)(s/r)2)1/2) [web citation] | |
| Sag For Asphere 1 3D | s2 = x2 + y2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 [web citation] | |
| Sag For Asphere 2 3D | s2 = x2 + y2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + A6*s6 [web citation] | |
| Sag For Asphere 3 3D | s2 = x2 + y2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + A6*s6 + A8*s8 [web citation] | |
| Transform Sag For Asphere 0 3D | s2 = (ax+b)2 + (cy+d)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) [web citation] | |
| Transform Sag For Asphere 1 3D | s2 = (ax+b)2 + (cy+d)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 [web citation] | |
| Transform Sag For Asphere 2 3D | s2 = (ax+b)2 + (cy+d)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + A6*s6 [web citation] | |
| Transform Sag For Asphere 3 3D | s2 = (ax+b)2 + (cy+d)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + A6*s6 + A8*s8 [web citation] | |
| Sag For Asphere 0 Borisovsky With Offset 3D | s2 = (x - a)2 + (y - b)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + offset + Offset | |
| Sag For Asphere 0 Scaled With Offset 3D | s2 = x2 + y2 z = Scale * (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + Offset [web citation] | |
| Sag For Asphere 0 With Offset 3D | s2 = x2 + y2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + Offset [web citation] | |
| Sag For Asphere 1 With Offset 3D | s2 = x2 + y2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + Offset [web citation] | |
| Sag For Asphere 2 With Offset 3D | s2 = x2 + y2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + A6*s6 + Offset [web citation] | |
| Sag For Asphere 3 With Offset 3D | s2 = x2 + y2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + A6*s6 + A8*s8 + Offset [web citation] | |
| Transform Sag For Asphere 0 With Offset 3D | s2 = (ax+b)2 + (cy+d)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + Offset [web citation] | |
| Transform Sag For Asphere 1 With Offset 3D | s2 = (ax+b)2 + (cy+d)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + Offset [web citation] | |
| Transform Sag For Asphere 2 With Offset 3D | s2 = (ax+b)2 + (cy+d)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + A6*s6 + Offset [web citation] | |
| Transform Sag For Asphere 3 With Offset 3D | s2 = (ax+b)2 + (cy+d)2 z = (s2/r) / (1+(1-(k+1)(s/r)2)1/2) + A4*s4 + A6*s6 + A8*s8 + Offset [web citation] | |
| Extreme Value A 3D | z = a * exp(-exp(-(x-b)/c)-(x-b)/c+1) + d * exp(-exp(-(y-f)/g)-(y-f)/g+1) | |
| Extreme Value B 3D | z = a * exp(-exp(-(x-b)/c)-(x-b)/c+1) * exp(-exp(-(y-d)/f)-(y-d)/f+1) | |
| Gaussian A 3D | z = a * exp(-0.5 * (((x-b)/c)2 + ((y-d)/f)2)) | |
| Gaussian B 3D | z = a * exp(-0.5 * (((x-b)/c)2)) + d * exp(-0.5 * (((y-f)/g)2)) | |
| Log-Normal A 3D | z = a * exp(-0.5 * (((ln(x)-b)/c)2 + ((ln(y)-d)/f)2)) | |
| Log-Normal B 3D | z = a * exp(-0.5 * (((ln(x)-b)/c)2)) + d * exp(-0.5 * (((ln(y)-f)/g)2)) | |
| Logistic A 3D | z = 4a * exp(-((x-b)/c))/((1+exp(-((x-b)/c)))2) + 4d * exp(-((y-f)/g))/((1+exp(-((y-f)/g)))2) | |
| Logistic B 3D | z = 16a * exp(-((x-b)/c)-((y-d)/f)) / ((1+exp(-((x-b)/c)))2 * (1+exp(-((y-d)/f)))2) | |
| Lorentzian A 3D | z = a / ((1+((x-b)/c)2)*(1+((y-d)/f)2)) | |
| Lorentzian B 3D | z = a / (1+((x-b)/c)2) + d * (1+((y-f)/g)2) | |
| Extreme Value A With Offset 3D | z = a * exp(-exp(-(x-b)/c)-(x-b)/c+1) + d * exp(-exp(-(y-f)/g)-(y-f)/g+1) + Offset | |
| Extreme Value B With Offset 3D | z = a * exp(-exp(-(x-b)/c)-(x-b)/c+1) * exp(-exp(-(y-d)/f)-(y-d)/f+1) + Offset | |
| Gaussian A With Offset 3D | z = a * exp(-0.5 * (((x-b)/c)2 + ((y-d)/f)2)) + Offset | |
| Gaussian B With Offset 3D | z = a * exp(-0.5 * (((x-b)/c)2)) + d * exp(-0.5 * (((y-f)/g)2)) + Offset | |
| Log-Normal A With Offset 3D | z = a * exp(-0.5 * (((ln(x)-b)/c)2 + ((ln(y)-d)/f)2)) + Offset | |
| Log-Normal B With Offset 3D | z = a * exp(-0.5 * (((ln(x)-b)/c)2)) + d * exp(-0.5 * (((ln(y)-f)/g)2)) + Offset | |
| Logistic A With Offset 3D | z = 4a * exp(-((x-b)/c))/((1+exp(-((x-b)/c)))2) + 4d * exp(-((y-f)/g))/((1+exp(-((y-f)/g)))2) + Offset | |
| Logistic B With Offset 3D | z = 16a * exp(-((x-b)/c)-((y-d)/f)) / ((1+exp(-((x-b)/c)))2 * (1+exp(-((y-d)/f)))2) + Offset | |
| Lorentzian A With Offset 3D | z = a / ((1+((x-b)/c)2)*(1+((y-d)/f)2)) + Offset | |
| Lorentzian B With Offset 3D | z = a / (1+((x-b)/c)2) + d * (1+((y-f)/g)2) + Offset | |
| Full Cubic 3D | z = a + bx + cy + dx2 + fy2 + gx3 + hy3 + ixy + jx2y + kxy2 | |
| Full Quadratic 3D | z = a + bx + cy + dx2 + fy2 + gxy | |
| Linear 3D | z = a + bx + cy | |
| Simplified Cubic 3D | z = a + bx + cy + dx2 + fy2 + gx3 + hy3 | |
| Simplified Quadratic 3D | z = a + bx + cy + dx2 + fy2 | |
| User-Selectable Polynomial 3D | z = user-selectable polynomial |
| Power A 3D | z = a * (xb + yc) | |
| Power B 3D | z = a + xb + yc | |
| Power C 3D | z = a + xb * yc | |
| Power D 3D | z = axb + cyd | |
| Power E 3D | z = a * xb * yc | |
| Transform Power A 3D | z = a * ((dx + f)b + (gy + h)c) | |
| Transform Power B 3D | z = a + (dx + f)b + (gy + h)c | |
| Transform Power C 3D | z = a + (dx + f)b * (gy + h)c | |
| Transform Power D 3D | z = a(fx + g)b + c(hy + i)d | |
| Transform Power E 3D | z = a * (dx + f)b * (gy + h)c | |
| Power A With Offset 3D | z = a * (xb + yc) + Offset | |
| Power D With Offset 3D | z = axb + cyd + Offset | |
| Power E With Offset 3D | z = a * xb * yc + Offset | |
| Transform Power A With Offset 3D | z = a * ((dx + f)b + (gy + h)c) + Offset | |
| Transform Power D With Offset 3D | z = a(fx + g)b + c(hy + i)d + Offset | |
| Transform Power E With Offset 3D | z = a * (dx + f)b * (gy + h)c + Offset | |
| Rational A 3D | z = (a + bx + cy)/(1 + dx + fy) | |
| Rational B 3D | z = (a + b*ln(x) + c*ln(y))/(1 + dx + fy) | |
| Rational C 3D | z = (a + b*exp(x) + c*ln(y))/(1 + dx + fy) | |
| Rational D 3D | z = (a + b*ln(x) + c*exp(y))/(1 + dx + fy) | |
| Rational E 3D | z = (a + b*exp(x) + c*exp(y))/(1 + dx + fy) | |
| Rational F 3D | z = (a + bx + cy)/(1 + d*ln(x) + f*ln(y)) | |
| Rational G 3D | z = (a + bx + cy)/(1 + d*exp(x) + f*ln(y)) | |
| Rational H 3D | z = (a + bx + cy)/(1 + d*ln(x) + f*exp(y)) | |
| Rational I 3D | z = (a + bx + cy)/(1 + d*exp(x) + f*exp(y)) | |
| Rational J 3D | z = (a + b*ln(x) + c*ln(y))/(1 + d*ln(x) + f*ln(y)) | |
| Rational K 3D | z = (a + b*exp(x) + c*ln(y))/(1 + d*exp(x) + f*ln(y)) | |
| Rational L 3D | z = (a + b*ln(x) + c*exp(y))/(1 + d*ln(x) + f*exp(y)) | |
| Rational M 3D | z = (a + b*exp(x) + c*exp(y))/(1 + d*exp(x) + f*exp(y)) | |
| Rational N 3D | z = (a + bx + cy + dxy)/(1 + fx + gy + hxy) | |
| Rational O 3D | z = (a + b*ln(x) + c*ln(y) + d*ln(x)ln(y))/(1 + fx + gy + hxy) | |
| Rational P 3D | z = (a + b*exp(x) + c*ln(y) + d*exp(x)ln(y))/(1 + fx + gy + hxy) | |
| Rational Q 3D | z = (a + b*ln(x) + c*exp(y) + d*ln(x)exp(y))/(1 + fx + gy + hxy) | |
| Rational R 3D | z = (a + b*exp(x) + c*exp(y) + d*exp(x)exp(y))/(1 + fx + gy + hxy) | |
| Rational S 3D | z = (a + bx + cy + dxy)/(1 + f*ln(x) + g*ln(y) + h*ln(x)*ln(y)) | |
| Rational T 3D | z = (a + bx + cy + dxy)/(1 + f*exp(x) + g*ln(y) + h*exp(x)*ln(y)) | |
| Rational U 3D | z = (a + bx + cy + dxy)/(1 + f*ln(x) + g*exp(y) + h*ln(x)*exp(y)) | |
| Rational V 3D | z = (a + bx + cy + dxy)/(1 + f*exp(x) + g*exp(y) + h*exp(x)*exp(y)) | |
| Rational W 3D | z = (a + b*ln(x) + c*ln(y) + d*ln(x)*ln(y))/(1 + f*ln(x) + g*ln(y) + h*ln(x)*ln(y)) | |
| Rational X 3D | z = (a + b*exp(x) + c*ln(y) + d*exp(x)*ln(y))/(1 + f*exp(x) + g*ln(y) + h*exp(x)*ln(y)) | |
| Rational Y 3D | z = (a + b*ln(x) + c*exp(y) + d*ln(x)*exp(y))/(1 + f*ln(x) + g*exp(y) + h*ln(x)*exp(y)) | |
| Rational Z 3D | z = (a + b*exp(x) + c*exp(y) + d*exp(x)*exp(y))/(1 + f*exp(x) + g*exp(y) + h*exp(x)*exp(y)) | |
| Rational A With Offset 3D | z = (a + bx + cy)/(1 + dx + fy) + Offset | |
| Rational B With Offset 3D | z = (a + b*ln(x) + c*ln(y))/(1 + dx + fy) + Offset | |
| Rational C With Offset 3D | z = (a + b*exp(x) + c*ln(y))/(1 + dx + fy) + Offset | |
| Rational D With Offset 3D | z = (a + b*ln(x) + c*exp(y))/(1 + dx + fy) + Offset | |
| Rational E With Offset 3D | z = (a + b*exp(x) + c*exp(y))/(1 + dx + fy) + Offset | |
| Rational F With Offset 3D | z = (a + bx + cy)/(1 + d*ln(x) + f*ln(y)) + Offset | |
| Rational G With Offset 3D | z = (a + bx + cy)/(1 + d*exp(x) + f*ln(y)) + Offset | |
| Rational H With Offset 3D | z = (a + bx + cy)/(1 + d*ln(x) + f*exp(y)) + Offset | |
| Rational I With Offset 3D | z = (a + bx + cy)/(1 + d*exp(x) + f*exp(y)) + Offset | |
| Rational J With Offset 3D | z = (a + b*ln(x) + c*ln(y))/(1 + d*ln(x) + f*ln(y)) + Offset | |
| Rational K With Offset 3D | z = (a + b*exp(x) + c*ln(y))/(1 + d*exp(x) + f*ln(y)) + Offset | |
| Rational L With Offset 3D | z = (a + b*ln(x) + c*exp(y))/(1 + d*ln(x) + f*exp(y)) + Offset | |
| Rational M With Offset 3D | z = (a + b*exp(x) + c*exp(y))/(1 + d*exp(x) + f*exp(y)) + Offset | |
| Rational N With Offset 3D | z = (a + bx + cy + dxy)/(1 + fx + gy + hxy) + Offset | |
| Rational O With Offset 3D | z = (a + b*ln(x) + c*ln(y) + d*ln(x)ln(y))/(1 + fx + gy + hxy) + Offset | |
| Rational P With Offset 3D | z = (a + b*exp(x) + c*ln(y) + d*exp(x)ln(y))/(1 + fx + gy + hxy) + Offset | |
| Rational Q With Offset 3D | z = (a + b*ln(x) + c*exp(y) + d*ln(x)exp(y))/(1 + fx + gy + hxy) + Offset | |
| Rational R With Offset 3D | z = (a + b*exp(x) + c*exp(y) + d*exp(x)exp(y))/(1 + fx + gy + hxy) + Offset | |
| Rational S With Offset 3D | z = (a + bx + cy + dxy)/(1 + f*ln(x) + g*ln(y) + h*ln(x)*ln(y)) + Offset | |
| Rational T With Offset 3D | z = (a + bx + cy + dxy)/(1 + f*exp(x) + g*ln(y) + h*exp(x)*ln(y)) + Offset | |
| Rational U With Offset 3D | z = (a + bx + cy + dxy)/(1 + f*ln(x) + g*exp(y) + h*ln(x)*exp(y)) + Offset | |
| Rational V With Offset 3D | z = (a + bx + cy + dxy)/(1 + f*exp(x) + g*exp(y) + h*exp(x)*exp(y)) + Offset | |
| Rational W With Offset 3D | z = (a + b*ln(x) + c*ln(y) + d*ln(x)*ln(y))/(1 + f*ln(x) + g*ln(y) + h*ln(x)*ln(y)) + Offset | |
| Rational X With Offset 3D | z = (a + b*exp(x) + c*ln(y) + d*exp(x)*ln(y))/(1 + f*exp(x) + g*ln(y) + h*exp(x)*ln(y)) + Offset | |
| Rational Y With Offset 3D | z = (a + b*ln(x) + c*exp(y) + d*ln(x)*exp(y))/(1 + f*ln(x) + g*exp(y) + h*ln(x)*exp(y)) + Offset | |
| Rational Z With Offset 3D | z = (a + b*exp(x) + c*exp(y) + d*exp(x)*exp(y))/(1 + f*exp(x) + g*exp(y) + h*exp(x)*exp(y)) + Offset | |
| Roman Surface (minus) 3D | z = (k(y2-x2) - (x2-y2)sqrt(k2-x2-y2)) / (2(x2+y2)) | |
| Roman Surface (minus) Offset XY 3D | z = (k((y+b)2-(x+a)2) - ((x+a)2-(y+b)2)sqrt(k2-(x+a)2-(y+b)2)) / (2((x+a)2+(y+b)2)) | |
| Roman Surface (minus) Scaled And Offset XY 3D | z = (k((cy+d)2-(ax+b)2) - ((ax+b)2-(cy+d)2)sqrt(k2-(ax+b)2-(cy+d)2)) / (2((ax+b)2+(cy+d)2)) | |
| Roman Surface (plus) 3D | z = (k(y2-x2) + (x2-y2)sqrt(k2-x2-y2)) / (2(x2+y2)) | |
| Roman Surface (plus) Offset XY 3D | z = (k((y+b)2-(x+a)2) + ((x+a)2-(y+b)2)sqrt(k2-(x+a)2-(y+b)2)) / (2((x+a)2+(y+b)2)) | |
| Roman Surface (plus) Scaled 3D | z = Scale * (k(y2-x2) + (x2-y2)sqrt(k2-x2-y2)) / (2(x2+y2)) | |
| Roman Surface (plus) Scaled And Offset XY 3D | z = (k((cy+d)2-(ax+b)2) + ((ax+b)2-(cy+d)2)sqrt(k2-(ax+b)2-(cy+d)2)) / (2((ax+b)2+(cy+d)2)) | |
| Roman Surface (minus) Offset XY With Offset 3D | z = (k((y+b)2-(x+a)2) - ((x+a)2-(y+b)2)sqrt(k2-(x+a)2-(y+b)2)) / (2((x+a)2+(y+b)2)) + Offset | |
| Roman Surface (minus) Scaled And Offset XY With Offset 3D | z = (k((cy+d)2-(ax+b)2) - ((ax+b)2-(cy+d)2)sqrt(k2-(ax+b)2-(cy+d)2)) / (2((ax+b)2+(cy+d)2)) + Offset | |
| Roman Surface (minus) With Offset 3D | z = (k(y2-x2) - (x2-y2)sqrt(k2-x2-y2)) / (2(x2+y2)) + Offset | |
| Roman Surface (plus) Offset XY With Offset 3D | z = (k((y+b)2-(x+a)2) + ((x+a)2-(y+b)2)sqrt(k2-(x+a)2-(y+b)2)) / (2((x+a)2+(y+b)2)) + Offset | |
| Roman Surface (plus) Scaled And Offset XY With Offset 3D | z = (k((cy+d)2-(ax+b)2) + ((ax+b)2-(cy+d)2)sqrt(k2-(ax+b)2-(cy+d)2)) / (2((ax+b)2+(cy+d)2)) + Offset | |
| Roman Surface (plus) Scaled With Offset 3D | z = Scale * (k(y2-x2) + (x2-y2)sqrt(k2-x2-y2)) / (2(x2+y2)) + Offset | |
| Roman Surface (plus) With Offset 3D | z = (k(y2-x2) + (x2-y2)sqrt(k2-x2-y2)) / (2(x2+y2)) + Offset | |
| Andrea Prunotto Sigmoid A 3D | z = a0 + (a1 / (1.0 + exp(a2 * (x + a3 + a4 * y + a5 * x * y)))) | |
| Andrea Prunotto Sigmoid B 3D | z = a0 + (a1 / (1.0 + exp(a2 * (x * a3 + a4 * y + a5 * x * y)))) | |
| Fraser Smith Sigmoid 3D | z = 1.0 / ((1.0 + exp(a - bx)) * (1.0 + exp(c - dy))) | |
| Fraser Smith Sigmoid Scaled 3D | z = Scale / ((1.0 + exp(a - bx)) * (1.0 + exp(c - dy))) | |
| Sigmoid 3D | z = a / ((1.0 + exp(b - cx)) * (1.0 + exp(d - fy))) | |
| Fraser Smith Sigmoid Scaled With Offset 3D | z = Scale / ((1.0 + exp(a - bx)) * (1.0 + exp(c - dy))) + Offset | |
| Fraser Smith Sigmoid With Offset 3D | z = 1.0 / ((1.0 + exp(a - bx)) * (1.0 + exp(c - dy))) + Offset | |
| Sigmoid With Offset 3D | z = a / ((1.0 + exp(b - cx)) * (1.0 + exp(d - fy))) + Offset | |
| Taylor Series A 3D | z = a + bx + cy + dx2 + fy2 + gxy | |
| Taylor Series B 3D | z = a + b*ln(x) + cy + d*ln(x)2 + fy2 + g*ln(x)*y | |
| Taylor Series C 3D | z = a + bx + c*ln(y) + dx2 + f*ln(y)2 + g*x*ln(y) | |
| Taylor Series D 3D | z = a + b*ln(x) + c*ln(y) + d*ln(x)2 + f*ln(y)2 + g*ln(x)*ln(y) | |
| Taylor Series E 3D | z = a + b/x + cy + d/x2 + fy2 + gy/x | |
| Taylor Series F 3D | z = a + b/ln(x) + cy + d/ln(x)2 + fy2 + gy/ln(x) | |
| Taylor Series G 3D | z = a + b/x + c*ln(y) + d/x2 + f*ln(y)2 + g*ln(y)/x | |
| Taylor Series H 3D | z = a + b/ln(x) + c*ln(y) + d/ln(x)2 + f*ln(y)2 + g*ln(y)/ln(x) | |
| Taylor Series I 3D | z = a + bx + c/y + dx2 + f/y2 + gx/y | |
| Taylor Series J 3D | z = a + b*ln(x) + c/y + d*ln(x)2 + f/y2 + g*ln(x)/y | |
| Taylor Series K 3D | z = a + bx + c/ln(y) + dx2 + f/ln(y)2 + gx/ln(y) | |
| Taylor Series L 3D | z = a + b*ln(x) + c/ln(y) + d*ln(x)2 + f/ln(y)2 + g*ln(x)/ln(y) | |
| Taylor Series M 3D | z = a + b/x + c/y + d/x2 + f/y2 + g/(xy) | |
| Taylor Series N 3D | z = a + b/ln(x) + c/y + d/ln(x)2 + f/y2 + g/(ln(x)*y) | |
| Taylor Series O 3D | z = a + b/x + c/ln(y) + d/x2 + f/ln(y)2 + g/(x*ln(y)) | |
| Taylor Series P 3D | z = a + b/ln(x) + c/ln(y) + d/ln(x)2 + f/ln(y)2 + g/(ln(x)*ln(y)) |
| Cosh X Plus Cosh Y [radians] 3D | z = amplitude_x * cosh(pi * (x - center_x) / width_x) + amplitude_y * cosh(pi * (y - center_y) / width_y) | |
| Cosh X Plus Sine Y [radians] 3D | z = amplitude_x * cosh(pi * (x - center_x) / width_x) + amplitude_y * sin(pi * (y - center_y) / width_y) | |
| Cosh X Plus Tangent Y [radians] 3D | z = amplitude_x * cosh(pi * (x - center_x) / width_x) + amplitude_y * tan(pi * (y - center_y) / width_y) | |
| Cosh X Times Cosh Y[radians] 3D | z = amplitude * cosh(pi * (x - center_x) / width_x) * cosh(pi * (y - center_y) / width_y) | |
| Cosh X Times Sine Y [radians] 3D | z = amplitude * cosh(pi * (x - center_x) / width_x) * sin(pi * (y - center_y) / width_y) | |
| Cosh X Times Tangent Y [radians] 3D | z = amplitude * cosh(pi * (x - center_x) / width_x) * tan(pi * (y - center_y) / width_y) | |
| Cosh XY [radians] 3D | z = amplitude * cosh(pi * (xy - center) / width) | |
| Reza's Custom Equation One [radians] 3D | z = (cos(a*x - b*y) + sin(c*x - d*y))n - (cos(f*x - g*y) + sin(h*x- i*y))n | |
| Reza's Custom Equation Two [radians] 3D | z = abs(cos((A*(x+B)) + C*(y+D))) + abs(cos((A*(x+B)) - C*(y+D))) - (sin(E*x+F))2 - (sin(E*y+G))2 | |
| Sine X Plus Cosh Y [radians] 3D | z = amplitude_x * sin(pi * (x - center_x) / width_x) + amplitude_y * cosh(pi * (y - center_y) / width_y) | |
| Sine X Plus Sine Y [radians] 3D | z = amplitude_x * sin(pi * (x - center_x) / width_x) + amplitude_y * sin(pi * (y - center_y) / width_y) | |
| Sine X Plus Tangent Y [radians] 3D | z = amplitude_x * sin(pi * (x - center_x) / width_x) + amplitude_y * tan(pi * (y - center_y) / width_y) | |
| Sine X Times Cosh Y [radians] 3D | z = amplitude * sine(pi * (x - center_x) / width_x) * cosh(pi * (y - center_y) / width_y) | |
| Sine X Times Sine Y [radians] 3D | z = amplitude * sin(pi * (x - center_x) / width_x) * sin(pi * (y - center_y) / width_y) | |
| Sine X Times Tangent Y [radians] 3D | z = amplitude * sin(pi * (x - center_x) / width_x) * tan(pi * (y - center_y) / width_y) | |
| Sine XY [radians] 3D | z = amplitude * sin(pi * (xy - center) / width) | |
| Tangent X Plus Cosh Y [radians] 3D | z = amplitude_x * tan(pi * (x - center_x) / width_x) + amplitude_y * cosh(pi * (y - center_y) / width_y) | |
| Tangent X Plus Sine Y [radians] 3D | z = amplitude_x * tan(pi * (x - center_x) / width_x) + amplitude_y * sin(pi * (y - center_y) / width_y) | |
| Tangent X Plus Tangent Y [radians] 3D | z = amplitude_x * tan(pi * (x - center_x) / width_x) + amplitude_y * tan(pi * (y - center_y) / width_y) | |
| Tangent X Times Cosh Y [radians] 3D | z = amplitude * tan(pi * (x - center_x) / width_x) * cosh(pi * (y - center_y) / width_y) | |
| Tangent X Times Sine Y [radians] 3D | z = amplitude * tan(pi * (x - center_x) / width_x) * sin(pi * (y - center_y) / width_y) | |
| Tangent X Times Tangent Y [radians] 3D | z = amplitude * tan(pi * (x - center_x) / width_x) * tan(pi * (y - center_y) / width_y) | |
| Tangent XY [radians] 3D | z = amplitude * tan(pi * (xy - center) / width) | |
| Cosh X Plus Cosh Y [radians] With Offset 3D | z = amplitude_x * cosh(pi * (x - center_x) / width_x) + amplitude_y * cosh(pi * (y - center_y) / width_y) + Offset | |
| Cosh X Plus Sine Y [radians] With Offset 3D | z = amplitude_x * cosh(pi * (x - center_x) / width_x) + amplitude_y * sin(pi * (y - center_y) / width_y) + Offset | |
| Cosh X Plus Tangent Y [radians] With Offset 3D | z = amplitude_x * cosh(pi * (x - center_x) / width_x) + amplitude_y * tan(pi * (y - center_y) / width_y) + Offset | |
| Cosh X Times Cosh Y[radians] With Offset 3D | z = amplitude * cosh(pi * (x - center_x) / width_x) * cosh(pi * (y - center_y) / width_y) + Offset | |
| Cosh X Times Sine Y [radians] With Offset 3D | z = amplitude * cosh(pi * (x - center_x) / width_x) * sin(pi * (y - center_y) / width_y) + Offset | |
| Cosh X Times Tangent Y [radians] With Offset 3D | z = amplitude * cosh(pi * (x - center_x) / width_x) * tan(pi * (y - center_y) / width_y) + Offset | |
| Cosh XY [radians] With Offset 3D | z = amplitude * cosh(pi * (xy - center) / width) + Offset | |
| Reza's Custom Equation One [radians] With Offset 3D | z = (cos(a*x - b*y) + sin(c*x - d*y))n - (cos(f*x - g*y) + sin(h*x- i*y))n + Offset | |
| Reza's Custom Equation Two [radians] With Offset 3D | z = abs(cos((A*(x+B)) + C*(y+D))) + abs(cos((A*(x+B)) - C*(y+D))) - (sin(E*x+F))2 - (sin(E*y+G))2 + Offset | |
| Sine X Plus Cosh Y [radians] With Offset 3D | z = amplitude_x * sin(pi * (x - center_x) / width_x) + amplitude_y * cosh(pi * (y - center_y) / width_y) + Offset | |
| Sine X Plus Sine Y [radians] With Offset 3D | z = amplitude_x * sin(pi * (x - center_x) / width_x) + amplitude_y * sin(pi * (y - center_y) / width_y) + Offset | |
| Sine X Plus Tangent Y [radians] With Offset 3D | z = amplitude_x * sin(pi * (x - center_x) / width_x) + amplitude_y * tan(pi * (y - center_y) / width_y) + Offset | |
| Sine X Times Cosh Y [radians] With Offset 3D | z = amplitude * sine(pi * (x - center_x) / width_x) * cosh(pi * (y - center_y) / width_y) + Offset | |
| Sine X Times Sine Y [radians] With Offset 3D | z = amplitude * sin(pi * (x - center_x) / width_x) * sin(pi * (y - center_y) / width_y) + Offset | |
| Sine X Times Tangent Y [radians] With Offset 3D | z = amplitude * sin(pi * (x - center_x) / width_x) * tan(pi * (y - center_y) / width_y) + Offset | |
| Sine XY [radians] With Offset 3D | z = amplitude * sin(pi * (xy - center) / width) + Offset | |
| Tangent X Plus Cosh Y [radians] With Offset 3D | z = amplitude_x * tan(pi * (x - center_x) / width_x) + amplitude_y * cosh(pi * (y - center_y) / width_y) + Offset | |
| Tangent X Plus Sine Y [radians] With Offset 3D | z = amplitude_x * tan(pi * (x - center_x) / width_x) + amplitude_y * sin(pi * (y - center_y) / width_y) + Offset | |
| Tangent X Plus Tangent Y [radians] With Offset 3D | z = amplitude_x * tan(pi * (x - center_x) / width_x) + amplitude_y * tan(pi * (y - center_y) / width_y) + Offset | |
| Tangent X Times Cosh Y [radians] With Offset 3D | z = amplitude * tan(pi * (x - center_x) / width_x) * cosh(pi * (y - center_y) / width_y) + Offset | |
| Tangent X Times Sine Y [radians] With Offset 3D | z = amplitude * tan(pi * (x - center_x) / width_x) * sin(pi * (y - center_y) / width_y) + Offset | |
| Tangent X Times Tangent Y [radians] With Offset 3D | z = amplitude * tan(pi * (x - center_x) / width_x) * tan(pi * (y - center_y) / width_y) + Offset | |
| Tangent XY [radians] With Offset 3D | z = amplitude * tan(pi * (xy - center) / width) + Offset | |
| List Of All 2D Equations | - | Standard Versions Only |
| List Of All 2D Equations | - | Including Extended Versions |
| List Of All 3D Equations | - | Standard Versions Only |
| List Of All 3D Equations | - | Including Extended Versions |
